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Executive Summary 

 
This report addresses the recent Department of Homeland Security (DHS) call for a 

Phase I study to (1) assess gaps in the forensically relevant knowledge about the 

population genetics of eight bacterial agents of concern, (2) formulate a technical 

roadmap to address those gaps, and (3) identify new bioinformatics tools that would be 

necessary to analyze and interpret population genetic data in a forensic context.   The 

eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., 

E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum.  

 

Our study focused on the use of bacterial population genetics by forensic investigators to 

test hypotheses about the possible provenance of an agent that was used in a crime or act 

of terrorism.  Just as human population genetics underpins the calculations of match 

probabilities for human DNA evidence, bacterial population genetics determines the level 

of support that microbial DNA evidence provides for or against certain well-defined 

hypotheses about the origins of an infecting strain.   

 

Our key findings are: 

 

• Bacterial population genetics is critical for answering certain types of questions in 

a probabilistic manner, akin (but not identical) to “match probabilities” in DNA 

forensics.  

 

• A basic theoretical framework for calculating likelihood ratios or posterior 

probabilities for forensic hypotheses based on microbial genetic comparisons has 

been formulated.  This “inference-on-networks” framework has deep but simple 

connections to the population genetics of mtDNA and Y-STRs in human DNA 

forensics. 

 

• The “phylogeographic” approach to identifying microbial sources is not an 

adequate basis for understanding bacterial population genetics in a forensic 
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context, and has limited utility, even for generating “leads” with respect to strain 

origin.  

 

• A collection of genotyped isolates obtained opportunistically from international 

locations augmented by phylogenetic representations of relatedness will not 

provide a useful forensic database.  A more useful database for each pathogen 

would consist of a detailed record of human and enzootic outbreaks noted through 

international outbreak surveillance systems, and “representative” genetic 

sequences from each outbreak.  

  
• Interpretation of genetic comparisons between an attack strain and reference 

strains requires a model for the network structure of maintenance foci, enzootic 

outbreaks, and human outbreaks of that disease, coupled with estimates of 

mutational rate constants.  Validation of the model requires a set of sequences 

from exemplary outbreaks and laboratory data on mutation rates during animal 

passage. The necessary number of isolates in each validation set is determined by 

disease transmission network theory, and is based on the “network diameter” of 

the outbreak. 

 

• The 8 bacteria in this study can be classified into 4 categories based on the 

complexity of the transmission network structure of their natural maintenance foci 

and their outbreaks, both enzootic and zoonotic.  

 

• For B. anthracis, Y. pestis, E. coli O157, and Brucella melitensis, and their 

primary natural animal hosts, most of the fundamental parameters needed for 

modeling genetic change within natural host or human transmission networks 

have been determined or can be estimated from existing field and laboratory 

studies.   

 

• For Burkholderia mallei, plausible approaches to transmission network models 

exist, but much of the fundamental parameterization does not.  In addition, a 
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validated high-resolution typing system for characterizing genetic change within 

outbreaks or foci has not yet been demonstrated, although a candidate system 

exists. 

 

• For Francisella tularensis, the increased complexity of the transmission network 

and unresolved questions about maintenance and transmission suggest that it will 

be more complex and difficult to develop useful models based on currently 

available data.   

 

• For Burkholderia pseudomallei and Clostridium botulinum, the transmission and 

maintenance networks involve complex soil communities and metapopulations 

about which very little is known. It is not clear that these pathogens can be 

brought into the inference-on-networks framework without additional conceptual 

advances.  

 

• For all 8 bacteria some combination of field studies, computational modeling, and 

laboratory experiments are needed to provide a useful forensic capability for 

bacterial genetic inference. 
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1. Introduction: bacterial population genetics is critical for 
answering certain forensic questions  

 
President Obama is vacationing in Martha’s Vineyard in the spring of 2010.  
Toward the end of his intended stay he becomes ill, as do several of his staff and 
two cabinet members who had joined him over several days.  They are 
diagnosed with acute respiratory tularemia.  Genetic sequencing and 
phylogenetic analysis indicate that the infecting genotype is evolutionarily close 
to recent isolates collected from the Squibnocket focus, which is closest to the 
president’s compound, but surprisingly are closer to an isolate held by Tufts 
University that was collected from the Katama focus on Martha’s Vineyard in 
2003, which is more than 10 miles distant.  Upon further investigation it is 
discovered that a former Tufts graduate student, who collected Ft isolates at the 
Katama site in 2003 but had since moved to the Midwest, was on Martha’s 
Vineyard during the week prior to the President’s illness.  He is connected to a 
militant right-wing group that the FBI has had under surveillance, but he claims 
that he was just visiting old haunts and taking photos.  Literature attributed to 
the group includes a pamphlet describing several ways to eliminate “enemies of 
Christ”, which includes using plague and “rabbit fever”.  Several democratic 
senators publicly demand that the FBI prosecute the former graduate student for 
attempting to assassinate the president.  The suspect’s lawyer publicly points out 
that the genomic sequences of the 2003 Katama isolate and the presidential 
strain “do not match” – they differ by a number of mutations, and “when the 
DNA doesn’t match, you cannot convict”.  He insists that the public health 
authorities have simply not done a thorough search to find the true source of the 
“tularemia virus.”   On the Fox news channel an expert points out that 
phylogenetic evidence used in HIV cases can only be used to show that two 
strains are “closely related”, and that unlike human DNA cases, phylogenetics 
cannot offer a probability value for the strength of association.  FBI searches 
include extensive sampling of the suspect’s home, automobile, possessions, and 
places he stayed that week but no samples test positive for Ft.  A northern 
Arizona laboratory has offered, for 25 million dollars, to sample and fully 
sequence “every strain of F. tularensis on Martha’s Vineyard.”  The FBI 
carefully considers the offer….   
      - Hypothetical scenario 

 

A recent report by the Commission on the Prevention of WMD Proliferation and 

Terrorism highlighted the high likelihood of an attack in the United States using a 

biological agent1. Because of the serious consequences that might follow from a decision 

concerning the attribution of a biological incident, and the potential danger of 

misconceptions among non-technical policymakers, it is important for scientists to be 

careful and clear about the interpretation of genotypic comparisons and any inferences 

drawn from them about the origin of the attack strain. 
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When the whole genome (consensus) sequences of any two isolates are compared, they 

will either be identical, or they will differ by one or more mutational changes.  It is now 

possible through a combination of sequencing and typing protocols to ascertain with 

extremely high confidence that any observed mutational difference is not due to an error 

in characterization2. If a pathogen is used to commit a crime or act of terrorism the 

“source” of that pathogen is most likely to be an isolate held by a legitimate laboratory, a 

human or animal victim of a past outbreak of that disease, or a sample from a recognized 

enzootic focus.  The genomic sequences of isolates from the incident and the putative 

source are primary evidence in a microbial forensic investigation.  When the sequences 

are identical, it is desirable to be able to communicate how small the probability is that 

they are not from the same source.   When they differ by one or more mutations, it may 

be desirable to communicate the probability that they nonetheless could be from the same 

source.  (Alternatively, it might be desirable to state the probability that they are from 

different sources.)  When an isolate has been associated with a source, it may be desirable 

to communicate how unlikely (or likely) it would be to obtain that same consensus 

genotype by chance in another source.   

 

More generally, during the investigation of a bioterrorism event or biocrime, 

investigators use evidence to construct a narrative regarding the acquisition, production, 

transport and deployment of the agent.   Each piece of evidence, including microbial 

genetic data, suggests, tests, and refines certain elements of the narrative, which can be 

formulated as hypotheses.  Examples of hypotheses that might arise in a bioforensics 

investigation are: 

 
☞ The bacterial strain involved in a bioterror incident was derived from one 

originally associated with a known past outbreak of that disease.   
 

☞ The bacterial strain that infected the victims of an outbreak was derived from a 
known natural focus of the pathogen in a certain geographical area. 

 
☞ The bacterial strain acquired certain unusual gene sequences as the result of 

natural lateral genetic exchange rather than by some deliberate genetic 
engineering process.  
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☞ The observed genetic differences between two bacterial isolates of interest are 
attributable to a single passage in an infected host. 

 
In order to test the first hypothesis it is necessary to know the degree of genetic diversity 

associated with isolates from the outbreak in question, even when the outbreak occurred 

in the distant past and only a single representative reference isolate is available.  

Similarly, testing the second requires an estimate of the genetic diversity of the microbe 

in a natural maintenance population in the wild, when it is not practical to obtain more 

than a handful of isolates from the focus in question.  The third hypothesis depends (in 

part) on the probability that a bacterium could find and acquire the relevant genes in its 

natural hosts (or in soil or water for some bacteria). The fourth depends on the probability 

of observing genetic change by chance or by adaptive pressures when a host becomes 

infected.  In each case, inferences from genetic sequence data require us to know 

something about the structure of the population of bacteria from which the isolate in 

question was (hypothetically) drawn, and the probability of observing certain genetic 

sequences in that population.  This is how the term “bacterial population genetics” is used 

in this report3. 

 

A related issue of importance is the role that databases and archives will play in future 

bioterror or biocrime investigations.  Following an analogy with “cold hits” in human 

DNA forensics4, it is tempting to consider a paradigm in which the sequence (or 

haplotype) of the attack strain is compared to a reference strain database hoping that 

observed sequence similarities will provide clues that somehow narrow the search for 

potential sources.   When the database in question is a select agent registry whose 

completeness is enforced by law, such a paradigm makes sense5.  However, its utility is 

restricted to excluding or including laboratories in the set of institutions compelled to 

provide information on strain holdings.  When considering other potential sources that a 

terrorist or criminal might use to obtain a pathogen, this paradigm breaks down, because 

for practical reasons a global database of bacterial genotypes cannot be exhaustive, and 

will always contain a biased sampling of genetic types.   Even worse, geographic 

associations, surmised from geographical metadata associated with strains in such a 

collection, will potentially confuse decision makers who give them unjustified weight.    
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Regardless of the structure or content of a microbial forensic database, to make any 

comparison of genetic sequence data useful it is necessary to have a basis for interpreting 

degrees of genetic similarity.  Many authors have advocated a “phylogeographic” 

approach to interpretation6-15.  This paradigm uses phylogenetic construction to estimate 

the evolutionary relationships among a set of sequences (or haplotypes) and assigns, 

directly or indirectly, significance to the geographic associations of clades.  Whatever the 

merits of this approach, it provides no guidance for judging the impact of incomplete or 

biased sampling on source inferences made by comparisons with a database, or how one 

could achieve unbiased sampling even if it were practical.   

 

Given that databases and strain collections are necessarily incomplete, bacterial 

population genetics plays the same role in microbial forensics that human population 

genetics plays in classical forensics – it is essential for computing probabilities associated 

with the origin of genetic material. Population genetics is only needed in human DNA 

forensics because databases are necessarily incomplete – if every person’s DNA profile 

were in the database there would be no need to estimate the probability of finding a 

match.  Similarly, given the proper statistical framework, microbial population genetics 

provides a calculable level of support for well-defined hypotheses about the relationship 

between the attack strain and suspect sources.  In addition, this report will show how 

understanding bacterial population genetics helps define a useful database and suggests 

statistical sampling criteria. 

 

The analysis of the forensic utility of bacterial population genetics must begin with the 

question: what is the relevant “population” of a given pathogen?  Since the 

“phylogeographic” paradigm currently dominates thinking about forensic uses of genetic 

information, section 2 of this report summarizes the major criticisms of this approach.  In 

effect, phylogeography ignores a major determinant of microbial population structure that 

is relevant to forensic inference.  In section 3 we describe an alternative point of view, 

based on an “inference-on-networks” approach16.  This framework was developed 
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recently to provide a rigorous basis for the forensic analysis of viral transmission 

hypotheses, and the reader is encouraged to review reference 16 for more details.   

 

Much of the inference-on-networks framework developed for viral pathogens also applies 

to bacteria, but there are some crucial differences.  First, the mutational spectra of 

bacteria are far more complex than that of viruses.  Secondly, bacterial genomes still are 

large enough to present time and cost barriers to deep whole-genome sequencing, or the 

sequencing of large numbers of isolates.   This places some practical limitations on the 

experimental validation of the network approach to bacterial genetic inference.  In spite 

of this, the inference-on-networks framework has a salient advantage over the 

phylogeographic approach because it can be directly related to two well-known human 

forensic DNA methods – mitochondrial and Y chromosome DNA typing17,18.   

 

Section 4 discusses each of the 8 pathogens in the context of the inference-on-networks 

framework, and reviews the available data that is relevant to performing probability 

calculations for these pathogens.  More details on estimating statistical quantities of 

interest are provided in section 5.  Section 6 outlines a way forward and presents a 

roadmap towards a improved system for genetic inference that is useful for microbial 

forensic investigations. 

 

A great deal of technical information is relegated to appendices.  Appendix 1 derives an 

expression for a “match probability” applicable to microbial genetic forensics.   

Appendix 2 outlines the relationship between the population genetics of microbial DNA 

and that of mitochondrial and Y chromosome DNA in humans.  Appendix 3 reviews the 

derivation of the “microbial paternity equation”, which is the analogue of expressions 

used to calculate the degree of support that human DNA sequence data provides for 

hypotheses about parenthood.  Appendix 4 discusses improved experimental designs for 

determining mutation rates.    
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2.  The “phylogeographic” approach to source identification is 

inadequate 

 

Within the last decade a number of articles have suggested an approach to source 

identification that attempts to provide statistical arguments about the significance of 

genetic similarity (or lack of similarity) between microbial isolates7,19,20.   This approach 

involves the use of collections of geographically referenced isolates and often invokes 

phylogenetic construction methods to provide measures of relatedness.  Some of these 

publications provide putative descriptions of the world-wide distribution of genotypes of 

several bacterial pathogens including B. anthracis8 and F. tularensis11, and more 

geographically restricted data on Y. pestis.  The distributions are based on databases of 

genetic haplotypes or sequence data that have been built through extensive, but 

opportunistic collection efforts.  

 

The correlation of phylogenetic information with geographical and temporal data is often 

referred to as phylogeographical analysis.  It is a widely accepted mode of explaining 

certain features of the historical spread of pathogen genotypes over large geographical 

areas. The geographical association of a source strain is regarded as evidence that may 

guide subsequent investigation8,19.  However, there are a number of problems and 

limitations associated with this approach to microbial source identification, even if it is 

only intended to “aid the attribution effort” rather than provide evidence that might be 

proffered in a courtroom or national security forum.    In this section we undertake a 

critical analysis of the phylogeographic approach sensu lato, and its underlying problems. 

 

Problem 1: The association of strain populations with geographical locations, not 
networks of global disease transmission 
 
The association of pathogen genotype with geographic location is seldom rigorous.  In 

nature, populations of pathogen variants cycle between various types of host animals and 

possibly the soil or water, which can migrate and spread diseases globally. The 

worldwide transportation network makes even long distance jumps possible. These 
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processes guarantee that genetic-geographic correlations will be scrambled in 

complicated ways.   This problem is compounded by maps that use national political 

boundaries to describe the putative geographic locations of isolates8,11, because non-

technical decision makers may give such associations unwarranted weight.   

 

Of course, none of this would present a problem per se if the databases contained isolates 

from every outbreak worldwide, and continuously sampled all new outbreaks.  However, 

this is not practical, and all such databases realistically are incomplete. 

 

Problem 2: Lack of authentication, completeness and accuracy of metadata associated 
with collected isolates 
 
Beyond the problem of completeness, collections may also contain erroneous or 

misleading associations.   There is generally insufficient information about the 

geographic coordinates and date of collection for the most isolates in pathogen databases 

to authenticate their origins.  Moreover, important statistical characteristics such as the 

size of the outbreak or focus from which the isolate was collected are not available.  At 

best, maps of “genetic diversity” are then simply annotated maps describing the state of 

current collections, whose accuracy at representing the actual worldwide distribution of 

the pathogen is not known.  As will be explained in subsequent sections, geographic and 

temporal data is actually less important for testing source hypotheses than data on the size 

and characteristics of the outbreak or focus from which the isolate was derived.    

 

Problem 3:  Unknown representation bias  

The phylogeographic approach offers no guidance about which, or how many outbreaks 

or foci must be sampled to achieve a collection that is “representative” of the true 

diversity of the pathogen population. Clearly, not every endemic region in the world has 

an equal chance of being represented in the collection, let alone every outbreak or focus.  

Thus, representation bias is an inevitable consequence of the fact that the isolates in 

current collections are typically chosen by academic microbiologists using ad hoc 

criteria, such as whether the isolate is “interesting” in a scientific or medical sense, or 

whether isolates can be obtained through chance collaborations.   
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This bias can be discerned directly in the data displayed in reference 8.  The WHO map 

for worldwide anthrax prevalence shows that central Africa (Chad, Niger, the Central 

African Republic, and the Sudan) is an endemic or even hyper-endemic area for this 

disease.  Nonetheless, the map of anthracis genotypes provided in reference 8 has no 

genotypes associated with central Africa.  Clearly there is no relationship between the 

number or size of outbreaks in each geographic area and the number of isolates from that 

area represented in the collection.   

 

Representation bias also constrains the validity of arguments that are sometimes 

proffered about the “rarity” of a particular genetic variant and its implication for source 

attribution7,8.   The apparent rarity of a haplotype in nature will depend very much on the 

level of resolution of the typing system as well as the sampling bias that is built into most 

collections.  A simple calculation illustrating the resolution effect is provided in 

Appendix 1.   If a large enough outbreak network is sampled, and whole genome 

sequences are compared, every haplotype begins to appear “rare.”   

 

Representation bias also influences the interpretation of  microbial genetic “matches” 

based on empirical distributions of pairwise genetic differences.   In references 7 and 22, 

an empirical distribution of pairwise differences between VNTR haplotypes was 

constructed from the current VNTR database of worldwide samples and an Arizona case 

isolate.  Clearly, if the database were more heavily populated by isolates from Arizona, 

the resulting distribution would have been shifted to much lower difference values, 

greatly changing the interpretation criterion for “matching” offered in this paper.  In 

general, the distribution of pairwise genetic differences is only accurate if the isolates are 

sampled in an unbiased way from a completely connected transmission network. 

 

Problem 4:  Limits to the inferential power of phylogenetic analysis 

In spite of the general acceptance of phylogenetic constructions as inferential tools, all 

applications of phylogeny to microbial source inference suffer from one or more of the 

following limitations: 
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(1) They implicitly assume that all possible sources have been identified, and one or more 

sequences are available for each source so that inference is occurring on a closed set of 

possible sources.  When this assumption is not true, the inferences from phylogeny are 

restricted to statements that a pair of isolates is genetically closer to each other than to 

other isolates in the compared set, that the construction provides a measure of genetic 

similarity between two isolates in the set (e.g. the sum of the branch lengths to the most 

recent common ancestor,) and that there is an inferred common ancestor sequence for any 

pair of sequences in the compared set.    

 

(2) An ancestral sequence identified for two isolates cannot be associated with any 

particular source without some additional information or assumptions.  Information that 

is needed includes times associated with hypothesized transmission events, or evidence 

excluding the possibility of additional uncharacterized sources. When sequence data from 

the complete set of possible sources is not available, an observed phylogenetic 

relationship may be consistent with many alternative transmission trees.  Similarly, 

several phylogenetic patterns may correspond to the same transmission history with equal 

probability.  Figure 1 illustrates alternative transmission relationships that are consistent 

with a given phylogeny. 
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Figure 1.  Alternative transmission relationships are consistent with a given phylogeny. 

(3) Confidence levels are expressed as the ratio of the likelihoods of the most to the next-

most probable trees22. The likelihoods themselves simply express the probability of a 

certain evolutionary path, but have no obvious relationship to the probability of a 

hypothesized source or transmission event.  Bootstrap support levels are often cited as 

measures of confidence, but rigorously they provide only a relative measure of 

confidence that similar data would produce a similar tree, not that an inferred 

transmission path is probable.    

 

A common misperception is that tests based on isolates from known microbial 

transmission trees provide support for deducing transmission relationships from 

phylogenetic construction.  The classic paper by Leitner on human immunodeficiency 

virus (HIV) is often cited23.  In fact, this perception is erroneous, being a clear case of the 

fallacy of exchanging the conditional.   If Φ  represents a phylogenetic construction, and 

T  a transmission tree relating a set of genetic sequences, then comparisons such as 

Leitner’s provide a measure of P(Φ |T  ), not P(T |Φ).   Moreover, it is not widely 

appreciated that several papers, including Leitner’s, can be interpreted as demonstrating 

(perhaps inadvertently) that the probability P(Φ|T) of constructing the correct phylogeny 

given the genetic data from a known transmission tree is actually quite low.  Leitner’s 

paper showed that 14 out of 14 proffered phylogenetic constructions based on the known 

transmission tree were in error in at least one branch, implying that P(Φ|T) ≈ 0. 

 

To summarize, the current emphasis on phylogeographic analysis is questionable from 

three points of view:  

 

☞ the representation of worldwide bacterial population genetic data in a form that 
might easily be misinterpreted by triers of fact or decision makers at the policy 
level 

 
☞ uncertainties about (or lack of validation of) the accuracy and representativeness 

of that data and their effect on statistical inferences about “matches” 
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☞ the tendency to overestimate the inferential power of phylogenetic comparisons 
for identifying sources when all possible sources are not represented.    

 

Even the most carefully planned campaign of worldwide collection would probably not 

provide an accurate picture of the global distribution of genotypes for any pathogen, 

given the realities of funding and worldwide cooperation.   Fortunately, there is a well-

defined theoretical framework that permits inferences with far more rigor, does not 

demand a large geographically “representative” pathogen archive, and provides explicit 

guidance for the number and types of isolates to be collected for reference purposes. This 

framework is described in the next section. 

   

N.B. As was pointed out in section 1, these problems do not apply to a national pathogen 

registry system, in which laboratories handling select agent pathogens must, by law, 

provide genotyping information (or isolates) to a central database.  The presumption of a 

registry system is that such a database is a complete, exhaustive, and accurate description 

of the “population” of genotypes held in laboratories.  When an investigation like 

Amerithrax is considered in this context, notions such as “strain rarity” do have meaning, 

and a national database does have utility. 

 

 

3. The transmission network theory of bacterial population genetics 
Zoonotic diseases spread and evolve on host-host transmission networks.  The relevant 

microbial “population” for answering many forensic questions regarding the origin of an 

attack strain (including the example hypotheses mentioned in section 1) is the set of all 

sub-populations of that microbe contained within the nodes of this network.  The most 

fundamental type of node is an infected animal or human, although networks of 

individual hosts can be re-scaled to define more complex nodes such as outbreaks or foci.  

(However, very often the more complex node is itself a network of individual infected 

hosts.)   New isolates can also be created by laboratory passage and exchange of strains 

between laboratories, and these may also be considered nodes in the network. 
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Bacterial isolates that are acquired for scientific, clinical, or nefarious use are typically 

samples taken from fundamental nodes – infected animals or humans – in the network for 

that disease.  Thus, when one isolate is compared to another, we can rigorously formulate 

and answer questions about the probability that the nodes they came from have certain 

network relationships, based on genetic data.  These calculations rely on certain 

fundamental probability distributions associated with the network and the process of 

genetic change on the network.  As will be discussed shortly, this provides the closest 

analogy possible between microbial and human DNA forensics.    

 

The bacterial population within an infected host is a mixture of genotypes differing from 

each other by a relatively small number of mutations.  Although viral genomes are short 

enough to permit this distribution to be revealed by current high coverage sequencing 

methods, this has not been done yet for whole bacterial genomes.  However, dilution 

plating often reveals genetic variants of bacteria if the mutations cause some noticeable 

phenotypic difference.  Genetic sequencing of bacterial isolates currently results in a 

single consensus sequence, which is taken to represent the genotype of the isolate’s 

population.   The consensus genetic sequence of an isolate obtained from a host node is 

often regarded as representing the genotype associated with the outbreak or focus to 

which that node belongs, even though there is a non-zero probability that the consensus 

sequences derived from two independent nodes in the outbreak or focus network will 

differ by at least one mutation.   

 

Changes in the consensus sequence from node to node in a disease transmission network 

are caused by several distinct mechanisms.  First, transmission of the disease from one 

host to another often involves a small number of bacteria.  If the genotypes of the 

infecting bacteria differ by chance from the consensus sequence of the population they 

are drawn from, then the population of bacteria formed by clonal expansion in the new 

host will exhibit the variant consensus genotype (this is sometimes called the “founder 

effect”.)  Second, if the immune system in a newly infected host differs from that of the 

infecting host, then the growth of a mutant genotype may be favored even if the infecting 

bolus was large.  A third mechanism, random termination of lineages, can also cause a 
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shift of the consensus sequence in cases where a bacterial population is maintained at a 

low but nearly constant level in the host.  (This is called Fisher-Wright drift3.)  Finally, if 

a pathogen colonizes an organ such as the gut, and comes in contact with other microbial 

communities, it may acquire new advantageous genes through horizontal transfer, 

causing the new genotype to dominate the population.    

 

A disease transmission network develops over time and space.  Certain parts of it may be 

associated with a certain historical time period and geographical region, but the entire 

network extends into the distant past and over large parts of the world.  Because some 

microbes can remain dormant for long periods of time before infecting a new host, and 

because infected hosts can be transported to new geographical regions by various 

mechanisms, time and location are not the natural variables associated with genetic 

similarity.   Isolates are genetically similar because they were sampled from nodes that 

were separated by a small number of transmission steps in the network.  (Conversely, the 

probability that the consensus sequences of two isolates differ increases as their network 

distance increases.)  Thus, the statistics of genetic change among nodes in disease 

transmission networks provide a more consistent framework than phylogeography for 

formulating and testing forensic hypotheses about strain origin. 

 

For example, in reference 16 (also provided in Appendix 3) we derive an expression for 

the probability that two isolates are derived from nodes that are M transmission steps 

apart.  When M = 1, then we are testing the hypothesis that there was direct transmission 

of the disease between two nodes, and the equation can be written:  

 

where s1 and s2 represent the two sequences being compared, P(s1,s2|M) is the probability 

of observing s1 and s2 given that the nodes they are sampled from are separated by M 

transmission steps, and P(M) is the probability that two randomly chosen nodes will be 
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separated by M steps.  This equation is analogous to the probability of paternity or 

maternity in human DNA forensics using Y chromosome or mitochondrial DNA24.  

 

It is also possible to define a “match probability” for bacterial isolates.  Consider the case 

of an outbreak where an isolate has been obtained from one node in the outbreak network 

and the consensus sequence is determined.   How likely is it that another randomly 

sampled node from the network would have yielded the same sequence?  In Appendix 1 

we derive an approximate form for this probability: 

 

 
 

where <k> is the average number of secondary cases of infection, G is the number of 

generations of transmission in the outbreak network, ΓJ is the genomic mutation rate, and 

Ghost is the average number of generations of clonal expansion of the bacterium within a 

host node.   

 

Another question that the network theory addresses in a transparent way is whether an 

isolate “belongs” to a given outbreak.  Since the advent of disease tracking networks for 

food pathogens and tuberculosis, rules of thumb have been offered based on experience 

and intuition.  Epidemiologists typically use some variant of the “Tenover criteria” to 

judge whether an infection can be assigned to an ongoing outbreak, or is a sporadic 

case25,26.  If the typing pattern exactly matches that of other isolates from the same 

outbreak or if it differs by just a few markers, the case is included.  Isolates differing by 

more than a few mutations are excluded.  Essentially the same approach was taken by 

Lowell, et. al. who attempted to use the existing VNTR database for Y. pestis strains to 

define the cutoff for declaring “match” and “mismatch”7.   However, it is easy to 

recognize the arbitrary nature of this approach, even in the face of attempts to refine it by 

adding other qualitative considerations such as the size or duration of the outbreak, or 
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whether there is other compelling epidemiological evidence to relate the case to the 

outbreak.  

 

In the network theory of microbial population genetics these arbitrary qualitative 

judgments about outbreak membership are replaced by an explicit probability expression. 

The probability that a isolate with consensus sequence s1 belongs to an outbreak network 

with consensus sequence s2 is given by P(M≤D0|s1,s2)  where D0 is the diameter of the 

outbreak network.  D0 is a probabilistic graph-theoretic measure of the longest path of 

transmission (i.e. the largest number of host-host transfer steps between any two nodes in 

the network,) and can be estimated from <k> and the number of nodes in the network.   

   

Finally, the network theory of bacterial population genetics provides a framework for 

understanding the probability that observed genetic changes can be attributed to natural 

horizontal exchange.  Genetic exchange events occur in nodes that have been infected 

from two distinct networks (say different animal hosts), or two distinct nodes from the 

same network.  A node in which transfer of genetic material has taken place may then be 

the initial node in a new, distinguishable outbreak network.  The analysis of the new 

strain is complicated by the need to identify the sub-sequences in its genome that are 

likely to belong to each of the original networks.  Once this has been done, the 

framework can be used on each genomic segment separately, to test the hypothesis that 

any two particular suspect reservoirs/outbreaks were the sources of the recombining 

strains.  If the most likely suspect reservoirs are unlikely to have a natural route of 

contact, it might indicate an artificial (i.e. man-made) origin for the event.  
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Figure 2.  Two overlapping disease transmission networks that infect a common node.   
 

To re-capitulate, the inference-on-nets approach recognizes that pathogen lineages are 

constrained to run along the vertices of a disease transmission network, and isolates that 

are the objects of forensic analysis are sampled from nodes in the network.  Generally, a 

consensus sequence is used to represent a node, although deep sequencing raises the 

possibility that genetic sequence populations from isolates can be used in the future.  

Nodes can be any relevant isolated sub-population of the pathogen – an infected host, a 

herd, a flock, a focus, or an outbreak.  The connectivity properties of the transmission 

network influence the probability of observing genetic relationships among representative 

sequences from different nodes.  

 

Two types of information are needed in order to apply the inference-on-nets framework 

to bacterial pathogens.  First, we must understand the structure of the disease 

transmission network in the enzootic and epizootic contexts. For 6 of the 8 pathogens in 

this study, the natural nodes are animal hosts, sometimes complicated systems of several 

mammals and insect vector species. It is not necessary to understand the detailed network 

in any actual case; we simply need good estimates of its statistical properties.  For 

example, how many nodes (animals) are involved?  What is the degree distribution P(k)?  

Is there node heterogeneity that can lead to segregation of the population into distinct 

sub-populations with different statistical parameters or increase the influence of 

adaptation on the genetic diversity of the pathogen?   It should also be kept in mind that 

sometimes the relevant number of nodes is not simply the number of infected hosts that 
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exist in the present.  Finally, given our current state of knowledge about many zoonoses 

there are probably cryptic nodes – i.e. classes of hosts we don’t yet know about.  The 

success of the approach may depend on whether cryptic nodes have a negligible influence 

on prediction, and can be ignored.   

 

In infectious diseases such as SARS or FMDV, the transmission network properties can 

be estimated from contact tracing studies of actual outbreaks16.  For the 8 bacterial 

diseases in this study such an approach is generally not feasible – the primary networks 

are built from transmission events involving wildlife, or unrecorded historical transport 

and migration events.   However, it is possible to construct and validate models for 

disease transmission in the wild, and perform stochastic simulations of transmission 

networks in order to obtain the necessary statistical parameters.  The next two sections of 

this report will provide more details on this approach.  

 

The second type of information that must be acquired is the rate of genetic change 

measured in terms of transmission steps along the transmission network.  The basic 

quantity of interest is the distribution P(s1,s2|M), noted above.  The best way to determine 

this is through direct empirical study of the consensus sequences of isolates drawn from 

pairs of hosts related by direct transmission.  This is seldom possible for animals in the 

wild, so laboratory studies of host-host transmission using the actual animal in question is 

often more practical.  In many cases, it will probably be necessary to use surrogate hosts 

or even in vitro passage to estimate the mutation rate.  In any case, genetic typing is 

almost certainly inadequate for determining changes among isolates so closely related, 

i.e. whole genome sequencing of each isolate is required.  Using laboratory determined 

mutation rates to infer rates of genetic change in the wild is not new, and forms the basis 

for inferences in the phylogeographic approach as well6,7,22.  Nonetheless, to capture 

enough data to make effective, validated rate models for more than just a few types of 

mutational loci in bacteria is a daunting task.   
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4. The 8 pathogens of concern in the inference-on-nets context 
In this section we review the state of knowledge about the 8 pathogens of concern in the 

context of the inference-on-nets approach to microbial forensics.  Although each section 

is fairly brief, it is the result of an extensive survey of literature on the host range, 

ecology, geographical foci, outbreaks, transmission mechanisms, mutation rates, typing 

systems, and genetic sequencing related to each organism.  The central issues are whether 

there is sufficient data to begin constructing models for deriving transmission network 

statistics, and what is known about the statistics of genetic change associated with the 

transmission of that disease. 

 

Bacillus anthracis 

The B. anthracis transmission network consists of the global chain of infected animals 

and soil areas that grew historically and geographically27,28.  Figure 3 displays a 

schematic representation of a segment of this network, with cattle or other animals 

becoming infected from soil-borne spores, and occasionally migrating (or being 

transported) to a new location where they die, re-inoculating a new patch of soil.  It has 

been suggested that healthy animals can be infected but not become clinically ill until 

some stress triggers acute disease, thereby permitting the transport of the animal and 

disease over long distances.  In addition, scavengers consuming the carcasses of animals 

that died from anthrax and then succumbing themselves may provide an additional link in 

the transmission network.   

 

Until recently, it was thought that the spores survived in soils in a dormant condition until 

physical processes concentrated enough spores in a grazing area that new hosts could be 

infected28-30.   However, recent work by Fischetti suggests that when anthracis enters the 

soil, phage infection can suppress sporulation and permit vegetative propagation, 

including colonization of the earthworm gut31.   Under certain circumstances, the phages 

are shed, re-activating sporulation.    If this is true, then living anthracis communities in 

the soil may contribute to genetic change, including horizontal genetic exchange, as much 

as the infection of animal hosts does.   
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Anthrax outbreaks are seasonal in nature, and there is some evidence that environmental 

changes can trigger synchronized outbreaks from spatially distinct soil foci over extended 

geographic regions.  Humans, infected by spores contained on hides, hair or other fomites 

derived from animals, are almost always terminal nodes, and do not further the 

transmission of B. anthracis.    

 

 
Figure 3. Simplified schematic transmission network segment for B. anthracis.  Dashed 
arrows represent migration or transportation of animals to new locations.   
 

 

A quantitative statistical description of the B. anthracis transmission network would 

primarily involve both natural and man-directed movement of infected cattle and other 

domesticated and wild animals among grazing areas.  Secondarily, the transportation of 

animal products such as feed, bone meal, hides and hair may be taken into account. From 

the work of Hugh-Jones and others, soil type and other climatic factors appear to be 

important constraints that determine the location of soil nodes28-30.   It is likely that the 

number of new soil nodes created by any given node after an outbreak is small, i.e. <k> ≈ 

1 when measured over one “anthrax season”.  However, the persistence of nodes would 

raise the overall <k> leading to a more rapid growth in the network.    
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The observed genetic variability in geographic regions that have been studied often 

indicates re-introduction of anthrax from distant sources (i.e. distant branches of the 

worldwide net.)32,33  However, the detailed modes of introduction a seldom analyzed, 

even though it is not uncommon to speculate about the possible geographical provenance 

of the source. For example, Kenefic, et. al. provide plausible phylogenetic arguments that 

the Western North American (WNA) strain followed human migration from Asia through 

the Bering straight, while the Ames strain originated in China33.  Historical and 

geographical records for both the Ames and the WNA networks are quite extensive28, and 

would provide a reasonable basis for testing and validating B. anthracis transmission 

network models when they are developed.   

 

Kenefic et. al. applied high resolution typing to a set of Bacillus anthracis isolates from a 

single, but spatially distributed outbreak35.   They examined “canonical” single nucleotide 

polymorphisms (SNPs), 15 variable number tandem repeat (VNTR) markers and four 

highly mutable single nucleotide repeat (SNR) markers.  Only the SNR markers showed 

changes, 1 allele state change each, in 17 out of 47 isolates.  If we were to assume that 

each isolate represents a single transmission step (M=1) from a common soil focus whose 

consensus sequence is characterized by the majority genotype, then a histogram of the 

fraction of isolates showing n allele changes would be an estimator of P(δ|M=1) where δ 

is a measure of genetic distance, in this case δ = n.     

 

Figure 4 compares the data observed by Kenefic with a binomial distribution estimator 

for P(n|M=1).  The binomial model predicts that the chance of seeing 2 or more allele 

changes between haplotypes is about 7%, so the lack of any 2-allele changes in Kenefic’s 

data set could be attributed to chance.  However, there are a number of reasons why both 

the data set and the probability model are not completely adequate for estimating the 

distribution of genetic changes.  First, it is not clear that all the isolates are from hosts 

infected at the same focus.  In fact, the geographical separation of many of the cases 

implies many presumably different foci – although they may be related to each other by a 

small number of transmission steps.  Second, the typing system has a relatively slow rate 

of change, and more samples would be required to observe multiple allele changes 
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between haplotypes.  The observation of n>1 data would greatly improve the fit with 

statistical models for P(n|M=1), and reduce the uncertainty in the fitting parameters. 

Finally, the model assumes that each locus has the same rate of change, whereas it is 

known that each of the 4 SNR loci has a different rate20.  Regardless, this analysis shows 

how sequence data on multiple isolates whose transmission relationships are known can 

be used to deduce the fundamental statistical parameters for genetic change on 

transmission networks.   
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Figure 4.  Estimate of the probability distribution P(n|M=1) from SNR data provided by Kenefic.  The data 

is fit to the binomial model of Lee, et. al., assuming 4 loci, 25 generations and a per locus probability of 

mutation of 2.2 x 10-3.  This model predicts only a 7% chance of seeing isolates with n > 1 among 47 

samples.  

 

Unfortunately, aside from Kenefic’s study, no other data has been collected from single 

anthrax outbreaks.   Future studies will be most useful if they analyze multiple isolates 

from infections that are attributable to a single focus.  In addition, isolates from outbreaks 

originating from a single focus over many years would provide valuable information on 

possible evolution of B. anthracis within a focus – presumably due to vegetative growth 

and interaction with the microbial community in that patch of soil.   
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Keim and co-workers have apparently used in-vitro passage experiments to study the 

mutation rates at VNTR and SNR marker sites in B. anthracis, but a comprehensive 

description of these experiments has not been published.  Rates for VNTR markers in the 

range of 10-5 to 10-4 gen-1 and SNR markers in the range 10-4 to 10-3 gen-1 have been 

quoted, in line with similar estimates in other bacteria20.     

 

Yersinia pestis 

The primary transmission network for Y. pestis is composed of populations of various 

rodents, with fleas as the primary vector36.  Many different rodent hosts and flea species 

are often involved, and the participation of cryptic reservoir or vector species is often 

suggested to explain Y. pestis persistence in the wild37,38.   In endemic regions, quiescent 

“maintenance” periods are punctuated by epizootic outbreaks, driven by changes in 

susceptible host populations, and possibly by mutational changes in Y. pestis virulence 

properties.   Human cases of plague are usually correlated with epizootics, sometimes 

with intermediary roles played by household pets.   Rarely a human outbreak will involve 

the pneumonic form, and small networks of infected human hosts with aerosol or droplet 

transmission linkages will form.   

 

As long as there is no vertical (parent to offspring) transmission of Y. pestis within the 

flea population, a plague focus can be considered a simple network with fleas as a 

transmission linkage.  (The clonal expansion of the pathogen within a flea host presents 

no additional complication to the network structure, or to the statistics of genetic change 

upon transmission.)  However, each focus probably consists of linked networks of several 

host species roughly occupying separate roles as  “maintenance” or “amplification” hosts.  

Thus, node heterogeneity may be an important detail in determining the genetic diversity 

of Y. pestis within a focus.   

 

Focus-to-focus transmission is driven by animal movement and contact events that cause 

fleas to leave one host and acquire a new one.  It has been noted that some Western US 

farmers have transported plague-infected rodents to their ranches from locations as far 
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distant as 100 km (as a rodent control measure.)39   A well-known example of inadvertent 

global scale transmission was the introduction of plague into San Francisco near the 

beginning of the 20th century via trans-Pacific shipping.   

 
Figure 5.  Schematic representation of plague transmission network elements.  The   

symbol indicates flea-mediated transmission.  

 

There are already a variety of transmission models and data for plague that could provide 

starting points for building and validating models for the network statistical distributions 

required by the inference-on-nets framework39-41.  A cellular automata model for plague 

transmission described by Keeling and Gilligan provides a potential approach to 

estimating focus-to-focus statistical distributions41.   Adjemian et. al. have assembled a 

database of over 1000 historical human and animal plague cases in the United States39.   

From this they extracted 95 human cases and animal epizootics that were the first 

reported plague cases in a geographic location (at the city or county level) where plague 

was not previously confirmed.  This data was fit to a diffusive type model for the spread 

of plague foci across the western United States, although it was acknowledged that 

transmission is better described by a stochastic network42.  

 

Transmission networks among rodents within foci have also been modeled in at least one 

case.  Davis and co-workers modeled plague transmission among great gerbils, which are 

a major reservoir for plague in Kazakhstan40.  This study defined nodes to be entire gerbil 

family groups located at a burrow system.  Transmission between family groups occurs 
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with some probability when an infected gerbil comes in contact with a gerbil from 

another family group and a flea jumps from the infected to the uninfected one.  Gerbil 

movement data, recorded during mark-and-recapture studies, was combined with data 

from field studies of flea dispersal in which fleas were marked using radionucleotides and 

their movements observed directly, to deduce network transmission probabilities.  

Random networks of vertices representing occupied burrow systems were generated from 

the real spatial arrangement of burrow systems observed on satellite images. 

 

A plague focus consisting of a system of prairie dog colonies was studied by Auerbach, 

et. al., who performed GPS mapping and sampling for fleas at the burrow level21.   

However, no network properties were considered, and even the simplest connection 

between network connectivity properties and genetic diversity was missed.  At least one 

traditional SIRS model for epizootic plague has been assembled43.   Parameters 

governing the transmission of plague in a system of 9 rodents and 19 flea species within a 

single California focus are either extracted from experimental data or estimated in this 

paper.  Again, no explicit network analysis was performed.  Nonetheless, the data, and 

the field methodologies employed in these studies would clearly be appropriate for 

building actual network descriptions of plague foci in the Western US.   

 

Finally, a number of human pneumonic plague outbreak transmission networks that were 

determined by contact tracing have been described and analyzed44,45.   Gani and Leach 

studied a large number of outbreaks and generated a probability density P(k) for the 

number of secondary cases k generated by each primary case45.  This was fitted to a 

geometric distribution P(k) = p(1-p)k  with p = 0.43.  In addition, distributions for latency 

period and infectious period were determined.  A simple Markov chain model was then 

constructed to simulate the time-course of epidemics, but which also could easily be used 

to generate disease transmission network statistics. 

 

To demonstrate how the primary data generated by Gani and Leach can be used to 

estimate network distributions required by the inference on nets approach, we have used 

methods described in reference 16 to estimate the distribution of node-node pair distances 
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for pneumonic plague outbreaks of various sizes.  Figure 6 shows an example of P(M) 

for an outbreak with 39 infected patients (about the size of pneumonic plague outbreaks 

that occurred in Mukden, China in 1946 or Madagascar in 195744.)  As described in 

section 3, P(M) is the probability that isolates sampled from two infected people drawn at 

random from the outbreak would be separated by M transmission steps.   Figure 6 thus 

provides an estimate of the prior probability that any two samples will be connected by 

direct transmission, and an estimate of the maximum separation in transmission steps that 

can be expected.  P(M) is combined with information about the probability of genetic 

change after M transmission steps to infer whether two isolates could be related by direct 

transmission, or whether an isolate “belongs” to a given outbreak.  
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Figure 6.   Pair distance distribution P(M) calculated using the degree distribution P(k) 
derived by Gani and Leach for pneumonic plague.  This example was generated using a 
Galton-Watson simulation of an outbreak with 39 patients. 
 

Mutations observed in Y. pestis include large genome rearrangements, inversions, 

insertion, deletion and movement of transposable elements, insertion and deletion of 
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tandem repeat elements, and single nucleotide substitutions46.   Vogler, et. al. reported 

mutation rate constants for 43 variable number tandem repeat (VNTR) loci determined by 

laboratory serial passage experiments6,7,22.  They also obtained upper bounds for the 

deletion rate of a set of loci containing IS100 insertion sequence elements.  Most 

importantly, by comparing VNTR mutation rates in Y. pestis and E. coli, they found 

essentially identical behavior, which is important support for the hypothesis that a general 

model of VNTR mutation rates applies to all bacteria.   Unfortunately, nearly every 

aspect of the analysis of field data presented in this paper is incorrect.  This included both 

an incorrect formula for estimating the most likely number of replication generations 

given an observed set of mutational differences, and an incorrect estimate of the 

maximum number of transmission generations expected in the prairie dog population 

studied.  Nonetheless, the mutation rate data is a valuable contribution towards the 

construction of models of P(s1,s2|M) for Y. pestis. 

 

Escherichia coli O157 H7 

The primary host species for E. coli O157 H7 is domestic cattle where it is maintained in 

the gut47.  Cattle are generally asymptomatic, and shed the pathogen in their feces.  Oral 

ingestion of contaminated fomites or food products is the major mode of transmission.  

Spillover into other animals both wild and domestic occurs regularly, including large 

human outbreaks through contamination of meat and other farm produce.  It is estimated 

that in human outbreaks, about 20% of observed cases are due to secondary transmission, 

primarily through the oral-fecal route48.   

 

There are then two basic levels at which transmission networks can be considered for E. 

coli.  First transmission at the individual animal level is used to describe the spread and 

genetic variation within a herd (or farm).  Secondly, transmission among farms and 

feedlots can be analyzed to describe the spread and genetic variation across larger 

regions.   Typically, when a human outbreak occurs, it involves a large number of 

primary cases infected from the same source, so the genetic diversity among the isolates 

will correspond to a single farm or even a single cow.  (Note that a single farm may 

harbor more than one distinguishable genotype, as can ground meat products, which often 
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have multiple sources of contamination.)  In the inference-on-nets approach, computing 

the strength of association of an outbreak to a farm would mean computing the genetic 

distance δ between the consensus sequences from the outbreak and farm, and the network 

diameter D0 for that farm.  A farm would be implicated if P(M≤D0|δ) > ½. (This implies 

that it is more likely than not that the outbreak isolate was a directly transmitted from a 

node in the network of infected animals on that farm. When multiple genotypes are 

involved, the test is applied to each type separately.)   Many of the basic elements needed 

to compute these quantities are already under development.  

 

Turner et. al. developed an elaborate network model for E. coli O157 transmission within 

a farm49.  They included population structuring found among typical UK dairy farms such 

as animal social groupings and separate management groups for unweaned, weaned, dry 

and lactating cows.  In addition, they differentiate between direct transmission, associated 

by cow-cow interactions such as grooming, and indirect transmission caused by general 

environmental contamination (including feed and water) with feces.  They observed that 

indirect transmission, which effectively raises the probability of one cow transmitting 

infection to all other cows (rather than to just close contacts), greatly influences the 

outbreak dynamics.  This effect could clearly also have an important influence on the 

pathogen genetic population, by making the initially infected cattle into “superspreaders”, 

and shortening the network diameter D0.   Since E. coli O157 is known to persist in hay, 

feed, and manure for long periods of time50, the indirect transmission mode might be very 

important. 

 

Transmission of E. coli O157:H7 among farms and feedlots is also well characterized.  

The movement of infected cattle may account for some of the observed spread, but 

Hancock, et. al. observed that farms separated by hundreds of kilometers often exhibit the 

same strains in the absence of recorded cattle movements47.   E. coli O157:H7 has been 

reported in a variety of wildlife species, and wildlife movement has sometimes been 

implicated in transfer of E. coli between farms.  Another possible mechanism is 

contamination of commercial feed at the place of manufacture.  Like indirect 

transmission within a farm, feed contamination may be a superspreading mechanism that 
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shortens the inter-farm network diameter.   This makes source attribution more difficult, 

as several farms may have P(M≤D0|δ) > ½. 

 

Using data from the United Kingdom’s Cattle Tracing System, Woolhouse, et. al. studied 

the network structure of 55 Scottish farms51.  They computed an R0 value (a quantity 

similar, but not identical to <k>) and found that 20% of cattle holdings accounted for 

80% of the R0 value.  This implies there may be a strong “superspreading” component to 

farm-farm transfer of O157 as well.  Brennan, et. al. studied the contact networks among 

U.K. farms, markets, dealers, and slaughterhouses52.  Heath, et.al. developed a network 

model for farm-farm spread and derived degree distributions P(k)53. Vernon and Keeling 

recently published a dynamic network model for cattle movements among farms in the 

United Kingdom54.  Thus, there are a wide variety of studies that provide a basis for 

simulating disease transmission among cattle and farms, which can provide the network 

statistical distributions necessary to apply the inference-on-networks approach to E. coli 

population genetics. 

 

There have been a number of studies of genetic change within populations of E. coli at 

the typing system level, and some of these raise certain issues regarding current models 

for mutation rates.   Noller, et. al.  demonstrated differences in VNTR haplotypes among 

outbreak related and non-related isolates55.  Isolates that had the same PFGE pattern 

differed  sometimes differed at one or two VNTR loci.  However, with no sound theory to 

guide them, the authors of this work were not able to provide a coherent test for whether 

two isolates whose PFGE patterns are identical, but VNTR haplotypes differ belonged to 

the same outbreak.   

 

Noller et. al’s observations of epidemiologically linked isolates of O157 with different 

VNTR haplotypes prompted them to study the mutation rates at VNTR loci by in-vitro 

serial passage studies56. They performed two types of experiments involving different 

mixtures of clonal selection and serial dilution steps.  In a system of 7 loci they estimated 

a total mutation rate of ≈ 4 x 10-3 gen-1, with the highest probability of change at one 

particular locus with rate ≈ 3.5 x 10-3 gen-1.    
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Vogler, et. al. studied a set of 28 VNTR loci in 10 different strains of O157 using a well-

defined serial passage protocol involving clonal selection in parallel lineages57.  Vogler’s 

VNTR loci included the subset that had been studied by Noller.  The highest combined 

mutation rate measured by Vogler for all loci was ≈ 6 x 10-4 gen-1, nearly an order of 

magnitude lower than was observed by Noller.  The reason for this discrepency is not 

clear from the information provided in the two papers, but might be due to the different 

experimental protocols. Vogler, et. al. did find that (as for Y. pestis VNTRs) a simple 

statistical model for VNTR mutations similar to one used for human STRs seemed to fit 

the E. coli data.  This paper and others by Keim and co-workers argue that VNTR 

mutations, like STRs are largely neutral6,7. 

 

In a long series of articles, Lenski and co-workers have studied the mutational spectrum 

of a laboratory-adopted strain of E. coli after many generations of passage58.  For 

example, a recent paper by Barrick, et. al. describes a comparison of the consensus 

genomes of a non-O157 E. coli strain that had been continuously passaged by 1:100 

serial dilution for 40,000 generations59.  They observed a large number of mutations of 

different types, including substitutions, insertions, deletions, transposable elements, and 

inversions.  Many of these mutations occurred in the same genes in independent lineages.  

They concluded that nearly all the observed mutations were adaptive, rather than neutral.  

This observation is consistent with their serial dilution protocol, where only adaptive 

sweeps are likely to change the consensus genotype of the population, and the constant 

growth environment for all lineages.    

 

Thus, while some basic estimates of E. coli VNTR mutation rates have been published, 

there are still a number of apparent inconsistencies among experimental results that will 

have to be resolved before reliable modeling of VNTR rates for bacteria is possible.  

Many of these same issues apply to the VNTR rates of B. anthracis and Y. pestis, but 

have not come to the fore because there have been no other independent experimental 

measurements of rate constants for these pathogens.    
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Brucella melitensis   

Several Brucella species cause disease in humans, including melitensis, abortus, and suis.  

In this section we focus on melitensis since it is the most virulent in man, and a 

significant cause of human disease in the US Southwest60,61.  Brucella melitensis is 

primary maintained in goats and sheep, with spillover into cattle and humans.  It can be 

transmitted by fomites and aerosols, but most large human outbreaks are associated with 

contaminated goat/sheep milk and cheese.  Cattle can become infected from goats or 

sheep through shared pasturage.  The B. melitensis strain Rev-1, which is commonly used 

to vaccinate livestock, is an attenuated strain, and is known to cause disease in humans.   

Like anthrax, plague and E. coli O157, Brucella melitensis occurs naturally in wild 

ruminants.    Thus, at the transmission network level, there are natural parallels with these 

diseases, as shown in Figure 7.  Since milk products are major routes for transmission to 

humans, factories involved in goat milk packaging or the manufacture of goat cheeses 

should properly be included as nodes. 

 

 
Figure 7.  Schematic representation of Brucella melitensis transmission network 

elements.  Herds of sheep and cattle, and sheep milk processing sites are also nodes in the 

larger scale network (not shown). 

 

Yamamoto et. al. developed a model for the transmission of Brucella abortus within and 

between cattle farms62.  The parameters of this model are probably not appropriate for 

Brucella melitensis, but could be modified to permit simulation based network estimates 
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of P(M) and other statistics of outbreaks.   Zinstag modeled Brucella melitensis 

transmission among sheep, cattle, and humans using parameters appropriate for 

Mongolia63.  However, this model only considers aggregated populations of animals, 

rather than individuals.  The empirical basis for constructing realistic network models for 

melitensis in wild caprine populations is far less developed than for Y. pestis, E. coli, and 

B. anthracis.  Similar findings obtain for the suis and abortus strains.   

 

In a major review, Whatmore identified a number of typing systems that have been 

applied to characterizing Brucella genomic diversity64.  In the past, the objective of most 

typing system development has been to differentiate the various host-species specific 

biovars within Brucella spp.  More recently, there has been increased interest in 

developing higher resolution techniques.  Whatmore identified 3 three VNTR schemes 

published to date65-67.  Tiller,et. al. recently published a comparison of two VNTR typing 

systems for Brucella melitensis68.  These typing systems used partly overlapping sets of 

15 loci each.  While it is highly plausible that additional resolution could be obtained 

from the examination of insertion sequence loci and genome-level nucleotide 

substitutions, neither system has been characterized in Brucella. 

 

Mutation rate data for the VNTR systems have not been published at this time, but 

Whatmore has reported both in vitro and in vivo (pigs) passage experiments in which 

single repeat changes at one or more loci were observed67.  An interesting observation is 

the presence of mixed cultures containing both the new and old alleles at comparable 

titers in the blood of the infected animals.  This strongly implies some selection process 

driving the conversion of the consensus genotype within the infected host.  It remains to 

be seen if the Brucella VNTRs can be quantitatively described by the same model that 

appears to work so well in Y. pestis and E. coli.   

 

Burkholderia mallei 

Burkholderia mallei is the causative agent of glanders in animals and humans69.   The 

pathogen is primarily maintained in horses, which can be cryptic, or subclinical carriers 

of the disease70.  Transmission mechanisms are not well understood, but are believed to 



Bacterial Population Genetics in a Forensic Context – Phase I report 
Lawrence Livermore National Laboratory 

LLNL-TR-420003 

36 

involve ingestion of bacteria shed by oral, nasal or ulcerous discharges, and less probably 

inhalation and skin contact with lesions.  Some association of transmission with the 

sharing of water or food sources has been cited69.  A schematic representation of part of a 

transmission network for glanders is displayed in figure 8.  As in other zoonoses there is 

both a within-focus (in this case herd) and between focus (herd) aspect to the overall 

network. 

 

 
Figure 8.  Schematic representation of Burkolderia mallei transmission network elements.  

In addition to horses, donkeys and other equine hosts may be involved. 

 

Since B. mallei apparently does not exist outside its host, and is strongly adapted to a 

narrow class of host species, the transmission network description of outbreaks and foci 

should be relatively simple.  However, we found no published work in this area.  

However, there is a rich literature on social interactions among horses, both wild and 

domestic, and it is likely that a disease transmission model could be constructed71,72.   It is 

possible that many aspects of transmission models for E. coli and Brucella would be 

similar for B. mallei.  In addition, there are some models available for equine influenza 

that might provide useful estimates of transmission parameters73.  

 

The genome of B. mallei is densely populated with repeat regions and insertion sequence 

elements.  Romero, et. al. observed that a high level of genomic variation in clonal 

populations of B. mallei would be consistent with the fact that exposure consistently fails 
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to induce immunity in a variety of hosts.  High levels of genetic diversity could be a 

consequence of the large number of repeats and IS elements. (The terminology “simple 

sequence repeats” or SSRs is roughly equivalent to “VNTRs” in other publications and 

“STRs” in human DNA.) They tested this hypothesis by determining the mutations that 

occur on passage of Burkholderia mallei in vitro and through animal and human hosts 

using whole genome sequencing.  They report a very large number of insertion and 

deletion events at simple sequence repeat loci as well as other sites, even on single 

passages74.   This is one of the first experiments that systematically studied genetic 

change in infected hosts during short-term acute infection with a bacterial agent.  By 

comparing the initial and passaged genotypes, P(δ|M=1) could be estimated from the 

detailed data generated in this experiment, given a definition of genetic distance that is 

defined consistently for the variety of observed mutation types.    

 

The mutable SSR and IS loci clearly provide a basis for typing systems for Burckholderia 

mallei.  A recent comparison of 9 mallei genome sequences75 identified a number of 

diverse loci, but no validated typing system derived from these observations has yet 

appeared.  U’Ren et. al. developed a 32 locus MLVA system that can be used with mallei 

or pseudomallei and estimated mutational rate constants by laboratory serial passage 

experiments of pseudomallei76.   Application of this system to sets of outbreak related 

isolates will be an important milestone for determining its suitability for transmission-on-

nets analysis.   

 

Francisella tularensis  

Like Brucella, Francisella is characterized by a number of closely related, ecologically 

distinct sub-species that can cause disease in humans. In this section we will restrict most 

of our attention to the type A strain, since it causes the most severe disease in humans, 

and because it has been involved in a number of well-known and incompletely resolved 

outbreaks of respiratory tularemia within the United States77.  In the standard 

epidemiological picture, Francisella tularensis type A (tularensis) in North America is 

maintained in populations of rabbits and hares in the wild.  It can be transmitted by 

ingestion, inhalation, or direct contact through the skin and mucous membranes, but 
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insect vectors, particularly ticks and biting flies, are considered the most common 

mechanism. F. tularensis  can survive for long periods on fomites in the environment, 

including food and water.  Individual flies may carry the organism for as long as 2 weeks 

and ticks throughout their lifetimes. Viable bacteria can also be found for weeks to 

months in the carcasses and hides of infected animals, and occasionally it is transmitted 

to carnivores. Outbreaks in humans represent spillover events sometimes mediated by 

pets such as dogs.   

 

Recent findings suggest that the pathogen is transmitted vertically in tick populations 

(transovarial transmission78.)  The possibility of tick-tick transmission complicates the 

network structure and estimates of the rate of genetic change within a tularensis focus, as 

indicated schematically in figure 9.  In contrast to the role of the flea in Y. pestis 

transmission, where it is assumed that only one flea connects a pair of direct transmission 

related rodents, we now must consider the possibility of two or more ticks intervening in 

a rabbit-to-rabbit (or other host mammal) transmission linkage, and pathogen 

reproduction and adaptation within the tick.   

 
Figure 9.  Schematic representation of Francisella tularensis tularensis transmission network elements.  

The importance of rabbits in maintaining the disease is not yet established, and the proper model of 

maintenance foci might involve only ticks, while focus-to-focus transmission may be mediated by other 

animals.  Note also the inclusion of tick-tick transmission. 
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Careful study of the structure of F. tularensis foci has only begun recently.  Goethert and 

Telford studied ticks on Martha’s Vineyard and found a distinct “microfocus” with a 

diameter of only 290 meters where the probability of finding ticks infected with F. 

tularensis was 20-30 times higher than background79.  More significantly, this area 

harbored the highest percentage of uncommon VNTR haplotypes, including one that 

matched an isolate from fatal case of human tularemia on Martha’s Vineyard.  They 

describe a plausible mechanism for transmission of F. tularensis to animal hosts and their 

participation in establishing of new foci involving ticks.  Intriguingly, this picture 

reverses the usual picture by, in effect, giving the ticks the role of hosts and the animals 

the role of vectors. Thus, a possible qualitative basis for a network model has been laid, 

but statistical parameters from field studies are not yet available.    

 

Many genotypes can be associated with a single focus, and hence a single outbreak.  For 

example, Peterson, et. al. found two distinct type A PFGE patterns associated with a 

cluster of 5 cases of tularemia in Utah80. The Martha’s Vineyard focus exhibited a 

number of different VNTR haplotypes79.  This can be understood as a consequence of 

large effective network size associated with long-term maintenance of a pathogen in an 

insect host. 

 

Like other bacteria, the genome of F. tularensis has a large number of mutable loci 

including VNTRs, IS elements, and single nucleotide substitutions.  Many of these have 

been utilized to generate typing systems with high resolution.  Vogler, et. al. describe an 

11 locus VNTR typing system for F.t. which was consolidated from an earlier 25 locus 

typing system81.  Pandya et.al. have developed a whole genome resequencing array that 

could be used to identify single nucleotide substitutions in outbreak samples82.  In a 

separate publication, Vogler and co-workers also reported a whole genome SNP typing 

assay using a microarray.   None of these systems have as yet been applied to genotyping 

isolates from a single outbreak or a single focus.  We were not able to find any recent 

published work on insertion sequence based typing.  Moreover, we found no published 

measurements of mutation rates, either in vitro or in vivo passage for VNTR or IS loci.  
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Goethert et. al. applied a 4 locus VNTR system to characterize two foci on Martha’s 

Vineyard, including the microfocus described above79. Phylogenetic analysis indicated 

that the microfocus had a star-like phylogeny indicative of clonal expansion, while a 

“emerging” focus showed signs of multiple independent introductions of F.t. from other 

sources.   

 

Johansson et. al. studied the variation of alleles at a single VNTR locus for sets of 

holarctica isolates derived from five separate tularemia outbreaks in Finland and 

Sweden84.  Each outbreak set had 6 or 7 isolates, and up to 3 allelic variants each.  Since 

the “outbreaks” occurred over relatively large geographic areas and over periods of 1 

year or more, it is not clear that a single focus was the source.  However, assuming that 

the structure of the foci for holoarctica are similar to those that Goethert studied, it is not 

surprising to find multiple allelic variants. 

 

Gurcan, et. al. examined Turkish and Bulgarian isolates of Ft holoarctica using a 6 locus 

MLVA system, and found that one Bulgarian isolate exhibited the same haplotype as 

several Turkish isolates85.  These isolates were from outbreaks in geographic regions 

1000 kilometers distant from each other.  They point out the many possible modes of 

contact between the two countries that could have resulted in direct transmission.   

 

Thus, while many of the necessary elements for building a network-based model for F. 

tularensis population genetics are beginning to take shape, the increased complexity of 

the transmission network and unresolved questions about maintenance and transmission 

suggest that it will be more complex and difficult to validate than B.anthracis, Y. pestis, 

E. coli, B. melitensis, and Burkholderia mallei.  On the other hand, continuing progress in 

characterizing the Martha’s Vineyard focus system, especially if statistical studies of tick-

animal contacts and further characterization of tick transovarial transmission become 

available, may permit such models to be developed.    
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Burkholderia pseudomallei  

Burkholderia pseudomallei, the causative agent of melioidosis, is genetically closely 

related to mallei but has a completely different ecology86,87.  It can live and reproduce in 

soil and water, which are regarded as its primary reservoir.  Currie has suggested that it 

may switch from a dormant to a reproducing state in response to climatic factors87.  

Transmission to animals and humans occurs through ingestion of contaminated soil or 

water, infection of open cuts and sores, and possibly through aerosols.  Strictly speaking, 

this is not a zoonotic disease, in the sense that infection of animals is apparently only 

incidental to its lifestyle, and the major engine of genetic change is therefore not within-

host adaptation and host-host transmission.   

 

Because the primary reservoir is soil and water, the spatial boundaries that separate 

definable network nodes are diffuse, and many individual clonal sub-populations may 

overlap in one spatial region.  The bacterial population size (and hence diversity) is 

probably correlated with the spatial volume of the colonized area.  While it is known that 

the distribution in soils is uneven, the factors that determine the local concentration are 

not known.  Clonal populations of pseudomallei in water are often associated with 

biofilm structures88, but rainfall and flooding can cause general mixing of populations so 

that, in general, foci will be complex metapopulations.  This situation is represented in 

figure 10, where coupled systems of diffuse (and overlapping) soil and water populations 

form “supernodes” that may be related to each other by transmission events mediated by 

humans, animals, or transport of agricultural products.   

 

This picture is supported by recent work in Thailand which determined the genetic 

diversity of pseudomallei sampled from soil in defined areas.  Chantaratita and co-

workers found that the pseudomallei cultured from soil samples taken from 3 locations in 

a 240 m2 plot of land had 12 PFGE types and 9 MLST patterns89.  Thus, it was possible 

to obtain relatively distant genotypes only a few meters apart.   U’Ren et. al. determined 

genotypes of pseudomallei isolates from a focus in Thailand using a 26 locus MLVA 

typing system90.  They cultured isolates from the soil in 19 individual 20 cm2 areas 

sampled within a 50 km2 region.  Many of the areas harbored 2 or more different 
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genotypes, and there was little correlation between location and genotype.  Finally, 

Pearson and co-workers found multiple VNTR genotypes associated with outbreak on a 

single farm in Australia91.  

 
Figure 10.  Network elements for Burkholderia pseudomallei.  Partially localized, but 

spatially and temporally overlapping soil and water populations form a metapopulation 

that forms a complex node, difficult to represent by a network structure.  

 

If we regard an entire pseudomallei focus as a “supernode” in a larger network, then 

describing its internal population genetic structure raises several new technical issues. 

When a zoonotic focus is modeled as a transmission network, the individual infected host 

or vector provides a natural “unit” that bounds generation numbers and defines aggregate 

statistical properties such as degree distributions and the number of nodes.  Empirically, 

for example, the number of hosts and vectors can be estimated by counting methods in 

the field. Within a landscape colonized by pseudomallei it is not apparent what the 

“natural unit” for network analysis is, other than individual re-colonization events 

themselves.   If this is true, it is difficult to see how to estimate the number of nodes 

associated with a focus, or estimate the average number of generations associated with a 

node so defined. 

 

Thus, several basic conceptual problems must be resolved before the inference-on-

networks approach can be applied to Burkholderia pseudomallei.  In addition, there is a 
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need for basic experimental work on growth in the soil environment – growth rates, 

colony sizes, and mutation rates including genetic exchange.   

 

Clostridium botulinum 

Populations of Clostridium botulinum are maintained in soil and water under anaerobic 

conditions and exhibit tremendous genetic diversity and worldwide presence92,93.  

Subspecies are typically designated by the toxin serological groupings A – G with 

various recognized subgroupings.   Outbreaks of botulism in humans are typically caused 

by C. botulinum contamination of food.  In animal outbreaks, consumption of dead 

animals, or feed that is contaminated by feces or carcasses is usually implicated.  

Generally, botulism is caused by the toxin produced by anaerobic growth in the 

consumed material, but occasionally colonization of the gut by C. botulinum occurs.  The 

most likely scenarios for deliberate use of C. botulinum to kill or injure people involve 

the introduction of botulinum toxin into foods.  If the toxin is not highly refined, there is 

reasonable probability that genetic material from the C. botulinum strain could be found 

in the contaminated food, and subjected to typing or sequencing.   

 

Like Burkholderia pseudomallei, it is likely that C. botulinum foci have a complex 

metapopulation structure that is currently difficult to model as a network.    While many 

authors have considered the geographic distribution of the various toxin types, there are 

only weak correlations between location and type94.  We have found little published 

literature on the ecology of this species, and studies of genetic change have focused on 

the toxin gene region.   As might be expected for a soil dwelling bacterium, there is 

evidence of extensive recombination and insertion events in the toxin gene complexes of 

Clostridium botulinum95.   
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5.  Estimating the statistics of disease transmission networks and 

validating the inference-on-nets approach 
In this section we want to describe in more detail how network models for bacterial 

pathogens can be constructed in order to determine the probability distribution functions 

that are used to make inferenence-on-networks calculations.  For convenience, various 

statistical quantities that are used in the framework are listed in table 1.  

  
Table 1. Distributions and other statistical quantities used in inference-on-networks calculations. 

Statistical quantity Name  Description 

G, N Network size 
Either the number of generations or the 
number of infected hosts in a disease 

transmission network 

P(k) Degree distribution 
function 

Probability that an infected host transmits to k 
other hosts 

<k> Average degree Average number of secondary cases per 
infected host 

P(M) Pathlength distribution 
function 

Probability that two randomly chosen infected 
hosts are M transmission steps apart 

D0 Network diameter Largest value of M for a transmission network 
with a certain number of infected hosts 

P(G|N) Network scaling 
distribution 

Probability that a transmission network with N 
hosts contains at least one host G generations 

from the index case 
   

δ(s1,s2) Genetic distance metric A measure of how different two genetic 
sequences are 

P(δ|M) Sampling distribution 
for genetic change 

Probability that two sequences will differ by δ 
given that they are separated by M 

transmission steps 

P(δ|M=1) Direct transmission 
sampling distribution 

Probability that two sequences will differ by δ 
given that they are separated by 1 transmission 

step 
   

P(0|G) or P(0|N) Match probability 

Given a sequence from one host, the 
probability that another host in the network 
will have the same sequence, conditional on 

the size (G or N) of the network 

P(M≤D0|δ) Outbreak inclusion 
probability 

Probability that two sequences differing by δ 
came from the same outbreak or focus 

P(M=1|δ) Direct transmission 
probability 

Probability that two sequences differing by δ 
are related by direct transmission 

 

To illustrate how these quantities come into play in a case investigation, we turn to the 

hypothetical scenario described at the beginning of this report.  In this scenario, the 
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investigator has one or more isolates of Francisella tularensis that were collected from 

the Katama site in 2003 and had been stored at Tufts (these are the “K-03 isolates”). In 

addition, he has the set of clinical isolates from the president and his entourage (the “P-10 

isolates”.)  From their genetic sequences he can calculate the genetic distance δ(s1, s2) 

between any K-03 sequence s1 and any P-10 sequence s2.   How does he compute the 

probability that the Ft that infected the president could have originated at the Katama 

site79 7 years ago?  

 

 First, he will need to have an estimate for the function P(M).  This can be computed if 

there is a model for the Ft transmission network that describes foci like the Katama site, 

and some estimate of the size of the focus (number of infected ticks and rabbits) in 2003 

from field data.   This also permits estimation of D0, the network diameter for the Katama 

2003 site. The network diameter is basically the value of M beyond which P(M) is 

negligible.    

 

Secondly, he will need an estimate of P(δ|M), computed using data from mutation rate 

experiments or from carefully correlated field data comparing sequences from 

transmission-linked pairs of hosts.  From P(δ|M) and P(M), the investigator can then 

compute P(M≤D0|δ) from equation (9) in Appendix 3.   P(M≤D0|δ) is the probability that 

the P-10 sequence and the K-03 sequence both originated from within the Katama 

transmission network.  (To account for possible laboratory growth of the agent, and 

passage through the victims, this calculation might use D0+1 rather than D0.)  

 

Note that the investigator can (and should) compare each reference sequence from the P-

10 set with each from the K-03 set; the results will vary slightly, depending on the 

relative location within the transmission network of the hosts from which the isolate was 

obtained.  But ambiguous results would only result if one of the K-03 isolates fortuitously 

came from a host or vector very close to the “edge” of the transmission network.  



Bacterial Population Genetics in a Forensic Context – Phase I report 
Lawrence Livermore National Laboratory 

LLNL-TR-420003 

46 

The provenance can be further narrowed by computing P(M≤M0|δ) with M0 < D0.  

Ultimately, the investigator can state that the P-10 strain is less than M transmission steps 

away from a particular isolate obtained from the Katama focus in 2003, with an explicitly 

calculated probability.   

 

The most general description of how the inference-on-nets approach can be implemented 

is illustrated in figure 11.  The problem neatly divides into three separate technical areas: 

the network statistics of disease transmission, quantitative descriptions of genetic change 

during disease transmission and infection, and synthesis of the desired distributions.  

Color shading has been used in table 1 to indicate which statistical quantities belong to 

each area.    

 
Figure 11.  General scheme for implementing the inference-on-networks approach.  

 

It is important to understand that it is not necessary to know the actual network of an 

outbreak or focus in question to make inferences.  Obviously, the actual network was 

determined by stochastic events, so it makes little sense to attempt to reproduce it in 

detail.  For zoonoses it is seldom possible to know even part of the actual network in any 

detail.  For example in the case of anthrax, most of the relevant network is a historical 

entity, clearly not amenable to study.  However, a valid model for the network should 

reproduce the statistical features that are determined from empirical sampling of real 

epizootics and foci of the same disease:  How well does the model reproduce the flow of 
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anthrax and pestis across the US, as known from historical records?  How well does it 

explain the distribution of tularensis genotypes in Martha’s Vineyard?  In a known 

outbreak of brucellosis in a herd, does it reproduce the distribution of observed pair-wise 

genetic distances?  

  

As suggested in reference 16, the most general approach to estimating transmission 

network statistical quantities like P(M) would be to utilize computer simulations of 

disease transmission on large social contact networks.   As was pointed out in section 4, 

elaborate disease transmission models have been constructed to investigate outbreak 

dynamics and the effect of control measures for several zoonotics in networks of animal 

hosts.  Other examples of models for transmission networks at the animal-animal, farm-

farm, or focus-focus scale are also available96-98.  These are of interest not solely for the 

animal-pathogen systems studied, but also for their methodologies, which may be 

applicable to the host systems associated with our pathogens.  Social contact networks are 

relatively stable but flexible descriptors of reservoirs and transmission nets over time and 

can easily be stored as reference data.  Moreover, it is decidedly more practical to 

consider collecting field data about the underlying social net, or take advantage of field 

studies funded through basic epidemiological science programs, than it is to directly 

gather contact tracing data from an animal outbreak.  A network model developed for one 

disease may apply in large part to others with minor changes in parameter values.  Thus, 

this approach holds considerable promise as an operational way to determine P(M) for 

bacterial pathogens relevant to a forensics case.  

 

The next important technical area to be addressed is quantitative descriptions of genetic 

change during disease transmission and infection, i.e. the sampling distribution P(δ|M).  

The genetic distance value δ may be defined in many ways, and a variety of sophisticated 

metrics have been proposed that take into account not only substitutions, but also 

insertions and deletions and other types of genetic change100.  It is important that genetic 

differences be scored according to a realistic “biological” model of genetic change.  For 

example, a deletion of n adjacent nucleotides is not simply equivalent to n single 
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nucleotide deletions.  Similarly an inverted region should not be scored as a region with a 

large number of substitutions.  Ideally, the value of δ should reflect the number of distinct 

mutational events that separate two sequences.  This may not be unambiguous in some 

events because there may be more than one possible sequence of events that cause a 

particular change in the genome, but we can expect that improved understanding of 

mutation rates will help decide between alternative evolutionary paths in such cases.  

 

A considerable simplification in the calculation of δ arises when the network size is small 

enough because the total number of genomic changes in any two sequences is then a 

modest fraction of the number of loci in the genome, and corrections for multiple 

mutations at a given locus are negligible.  Second, for smaller networks it is reasonable to 

approximate the statistical processes that lead to sequence diversification as stationary4, 

which is equivalent to assuming that the mutation rates did not change appreciably during 

the formation of the network.    

 

Assumptions about stationary mutation rates in bacteria can only be approximately 

correct and should be treated with caution, because it is known that “mutator” strains can 

spontaneously appear58. These strains have mutation rates orders of magnitude higher 

than normal because of mutations in replication and repair genes.   In any case, we can 

expect the stationary approximation to be most accurate for sequences that are “closely 

related” to the consensus sequence for the population in question.  The effect of non-

stationary effects on the practical accuracy of the inference-on-networks framework can 

only be established through future experimental studies.  

 

Implicit in this discussion is the assumption that whole genome sequencing will be used 

to compare case related samples.   Given the rate of progress in the capacity and cost of 

whole genome sequencing this is almost certainly warranted.  A simple illustration of the 

potential for future capacity is shown in figure 12, showing the number of days required 

to M bacterial isolates at an average coverage of N where NxM = 105  (E.g. 1000 isolates 

at 100x coverage).  However, error rates are still high enough that the application of 
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locus-specific allele analysis (e.g. SNP, VNTR, or IS typing assays) will still be required 

to provide high confidence that an observed mutation is real.   

 
Figure 12.  Time required to sequence N genomes of a certain size to a coverage of m per 

nucleotide where m x N = 105.    

 

In addition, even when whole genome sequence data is available it might be 

advantageous to select a restricted (although possibly large) set of mutational loci to 

calculate δ because it simplifies the determination of P(δ|M).  For example, we might 

choose a specific set of loci that exhibit neutral evolution, or some particular rate.  (The 

composition of this set might be different for each bacterium.)  However, whole genome 

sequencing would permit unambiguous identification of recombination and re-assortment 

events, which could confound simplistic distance measures. 

 

Assuming δ is defined, there are several approaches to determining P(δ|M).  First, there 

are purely empirical approaches for determining it from sequence data determined from 

pairs of nodes with known epidemiological relationships.  For any pair of nodes separated 

by M transmission steps in a completely connected outbreak tree, the observed δ value is 

a sample from its parent distribution.  Unfortunately, a direct approach to determining 

P(δ|M) by random (or exhaustive) sampling of many infected hosts in an outbreak is 
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generally impractical for animal outbreaks and foci, because  obtaining a complete and 

accurate transmission tree (so that the relationship between all the nodes is known) is not 

possible. However, in some cases we might be able to obtain reasonable representations 

of P(δ|M=1) and its complement P(δ|M>1) using empirical data from known transmission 

pairs. For example, pairs of isolates from known secondary transmission cases in human 

pneumonic plague or E. coli O157 outbreaks could be used for this way.   

 

If δ is a random variable distributed as P(δ|M=1) for a single transmission step, and each 

transmission event represents an independent sampling of the genomic distribution in the 

transmitting host, then δ after M transmission steps is distributed as the sum of M 

independent random variables each independently distributed as P(δ|M=1).  Thus for 

larger M we may write: 

 

P(δ|M=M0>1) = P(δ|M=1) ⊗ P(δ|M=1) ⊗ P(δ|M=1) ⊗……..P(δ|M=1)   (11) 

 

Where the right hand side of equation (11) is the M0-fold auto-convolution of P(δ|M=1). 

Hence, it is only necessary to obtain P(δ|M=1) in order to estimate P(δ|M) for larger 

values of M.  A reasonably large set of transmission linked pairs of isolates from a single 

outbreak thus allows us to validate the self-consistency of an entire network model 

because the empirical P(δ|M>1) generated by pairwise comparisons among unlinked 

members of the set can be compared to the P(δ|M>1) synthesized by combining P(δ|M) 

from (11) with P(M)  calculated from the transmission network model for that outbreak: 

 

P(δ|M>1) = ΣP(δ|M)P(M)/ΣP(M)       (12) 

 

where the sums are taken from M = 2 to ∞.   

 

A second option is to derive an estimate of P(δ|M=1) from laboratory animal passage 

experiments. Most of the 8 bacteria have laboratory animal models, as shown in table 2. 

In some cases it is possible to perform passage experiments on actual hosts in veterinary 
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facilities.  However, it is important that the laboratory experiments replicate the important 

features of the actual host-host transmission process in nature. For example, infection 

through natural mechanisms ensures that the size of the infecting bolus (e.g. a population 

bottleneck) mimics the natural process.  Mouse transmission models that reproduce the 

natural processes (flea bite and oral-fecal, respectively) have been demonstrated For Y. 

pestis and E. coli, and aerosol infection model has been demonstrated for Brucella 

melitensis, but this area of research is just beginning.  Host-host variation in immune 

response and other selective pressures is another factor that must be considered.  If host 

diversity effects are a selective driver of genetic variation in the natural transmission 

network, then it should be present in the experimental system.  

 

Table 2.  Laboratory animal models for bacterial pathogens. 

Bacterium Laboratory animal models 
or hosts Natural infection model? 

B. anthracis Mouse 
Rabbit No 

Y. pestis Rat 
Mouse Yes  

E. coli Cow 
Mouse Yes 

Brucella melitensis Goat 
Mouse Yes 

Burkholderia mallei Horse  
Mouse No 

Francisella tularensis 
Rabbit 
Mouse 

Rat 
No 

Burkholderia pseudomallei Mouse NA 
Clostridium botulinum  NA 

 

 

In the absence of direct experimental determinations of P(δ|M=1) a less satisfactory, but 

potentially useful approach is to perform in-vitro passage experiments to determine 

mutation rates at the relevant set of loci over which δ is defined, and then calculate 

P(δ|M=1) using the mutation rates as parameters.  There are several approaches to 

performing multi-locus, multi-allele simulations of pathogen evolution on transmission 
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networks, and some of these have already been applied to viral systems, but would need 

to be extended to include VNTR, IS, and other insertion-deletion loci characteristic of 

bacteria.  A somewhat less rigorous attempt to incorporate in vitro VNTR mutation rates 

into models for genetic inference has been pursued by Keim and co-workers, but this 

approach has not been subject to experimental validation6,7.     

 
 
Mutation rates are locus and sometimes strain specific, depending on genomic context, 

allele state, and the presence of mutations in key replication and DNA repair enzymes.  

This makes developing a realistic global model for mutations in even a single bacterial 

species a complex undertaking.  On the other hand, mutation rate experiments on E. coli 

and Y. pestis suggest that the mutation rate matrix at VNTR loci can be described by a 

common model in all bacteria, and it is possible that tractable models for other restricted 

sets of loci, such IS elements will be feasible.  Nonetheless, the practical success of this 

approach will depend on accumulating much more data than is now available.  This, in 

turn, will necessitate improvements in the rate and accuracy of these experiments. 

 

In vitro mutation rates are determined by assessment of the genetic changes that have 

occurred after a well-defined number of generations in a bacterial or viral lineage.  In 

order to create a lineage that represents a significant number of generations, repeated 

passage or prolonged continuous growth is necessary. Therefore precise measurements 

require repeated passages over extended lengths of time, with even the most rapidly 

growing bacteria requiring several years to accumulate a significant number of 

generations.  Under these circumstances, passage experiments to find anything but the 

fastest mutation rates become heroic multi-year exercises.  

 

One consequence is that the types of loci that can be studied in practice are generally 

restricted to those that have rates greater than 10-5 per generation, and important 

pathogens that have very slow generation times (e.g. M. tuberculosis) are essentially 

excluded from laboratory study.   Moreover, even those rates that have been reported are 

generally acknowledged to be only rough estimates.  In many cases, meaningful measures 
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of uncertainty cannot be assigned to these estimates because the experimental designs are 

not statistically robust.  

 

For example, the most comprehensive study of bacterial mutation rates to date is due to 

Lenski and co-workers, who have examined a set of 12 lineages of E. coli that have been 

propagated for more than 40,000 generations6.  Generating this set of samples required 

more than five continuous years of serial transfer every 48 hours.  A number of important 

observations about mutation and adaptation were extracted from this set of samples, 

including the finding that several lineages evolved into “mutators” with defective DNA 

mismatch repair systems resulting in mutation rates ≈ 100 times faster than normal.  

However, only very crude estimates of the rates of IS element mediated mutations and 

single nucleotide substitutions could be deduced from this data6,7.   

 

Sets of passaged samples have also been created for B. anthracis and Y. pestis.  In both 

cases 4 strains were passaged over 1000 generations in 100 lineages each8.  Estimates of 

VNTR mutation rates were made using these samples, but only loci with rates higher than 

1 x 10-5 per generation could be characterized.  Thus, while the approximate mutation 

rates of a limited number of loci in these and a few other bacteria have been estimated, 

many general questions that are fundamental to the inference-on-nets framework remain 

unanswered:   

 

• How much of the adaptive evolution phenomenology observed in E. coli is also 

exhibited by other bacteria, including pathogens such as Brucella spp. and F. 

tularensis?  For example, can DNA repair deficient mutators arise at significant 

rates in these species?  The appearance of mutators can change P(δ|M). 

 

• What is the effect of prolonged periods of starvation or other kinds of stress on 

the observed mutational spectrum and rate parameters?  This may be important 

for E. coli O157, Burkholderia pseudomallei, and Clostridium botulinum, which 

have important non-host environmental niches. 
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• What are the signature mutations that underlie adaptation of wild types to various 

laboratory growth conditions, and what are their characteristic rates? 

 

Therefore, there is clearly a need to develop practical methods for determining more 

accurate rate constants for a larger number of genetic loci in a broader range of bacteria, 

and for greatly reducing the time needed to generate this data.    

 

In appendix 4 we describe time-optimized experimental designs that can improve the 

speed at which mutation rates are determined by orders of magnitude.  In addition they 

lead to increased precision of the measured rate constants, and permit mutation rates 

slower than 10-5 per generation to be measured accurately.   Because the optimized 

designs require large numbers of replicate lineages to be generated, they require massive 

multiplexing.  This can be accomplished practically through the use of automation, 

micro-miniaturized bioreactors, and microfluidic sample control systems.  An automated 

serial passage instrument would accelerate a number of fundamental experiments and 

systematic studies that are difficult to contemplate now because of the time and manual 

labor that would be required.  The discussion in appendix 4 is based on the work of 

Messenger, Dzenitis and Velsko101, and the reader is directed to that document for 

additional details.   

 

Thus, a robust program to integrate bacterial population genetics into microbial forensics 

requires three major elements:   

 

Theory and modeling - It will be necessary to create individual network models for each 

pathogen (although some of them might be quite similar), and to consolidate and extend a 

general model for genome evolution within networks to include VNTRs, IS elements, and 

other insertion-deletion processes as well as substitutions.   

 

Field and laboratory data collection – While B. anthracis, Y. pestis, and E. coli probably 

have sufficient published data, additional field sampling and observation will be 

necessary to estimate the parameters needed to build network models for the other 
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pathogens.  For all 8 pathogens, isolates from epidemics, epizootics and foci or from 

animal passage experiments with realistic transmission conditions will have to be 

sequenced to provide data for estimating or validating genetic sampling distributions.  A 

more extensive campaign to determine in vitro mutational rate constants would be 

desirable.   

  

Validation  - After the model-building phase, an extensive validation campaign is 

necessary.  One of the key elements of this will be obtaining and sequencing very dense 

collections of isolates from exemplar outbreaks and foci.  For example, the minimum 

number of isolates required to validate a network genetic distance model is Niso ≈ 

[ln(Nout]2 where Nout is the number of infected hosts in the outbreak.  The data from these 

collections can be used to refine the parameters of the models.  Note that the inference-

on-networks framework leads to a theory-guided experimental program that replaces 

random, opportunistic collections with deliberate, planned collections to determine 

parameters and to validate predictions.   
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6.  The way forward 
The analysis outlined above provides a very general prescription for microbial forensic 

source inference that is applicable to many other pathogens in addition to the 8 species 

considered in this report.  Implementing the inference-on-networks approach across even 

those 8 would be a substantial undertaking, especially for Clostridium botulinum and 

Burkholderia pseudomallei where certain basic conceptual issues are not resolved, and 

the existing empirical knowledge base is still very thin.  Thus, this section is concerned 

with the practical implementation of the inference-on-nets framework within the national 

microbial forensics program, including how to stage and prioritize work on various 

pathogens.   

 

Based on the information presented in section 4, the 8 pathogens of interest fall into four 

classes, based on the complexity of the network description of their foci and outbreaks.   

This breakdown is summarized in table 3.  Class I contains those pathogens that are 

transmitted host-to-host through “inert foci” that do not support growth of the microbe.   

We currently place B. anthracis in this class, although additional evidence that soil 

vegetative growth is a significant part of its ecology would obviously change this.   Class 

II contains those pathogens which are maintained in foci whose structures are themselves 

simple networks.  Class III involves foci whose network structures are more complex, for 

example tick transovarial transmission in F. tularensis foci.  Finally, Class IV 

encompasses soil dwelling microbes whose populations are complex metapopulations.   
Table 3.  Class breakdown of the 8 pathogens of interest 

 
*Best approximate description for that organism  
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The “low hanging fruit” are clearly those pathogens in Classes I and II.  It is likely that 

existing architectures for transmission networks will be adequate to model them, and as 

noted for some, such models already exist, in part.   Note, for example that another class I 

organism is Mycobacterium tuberculosis.   We can take advantage of the extensive 

network modeling of TB to guide (mutatis mutandis) our approach to anthrax.  

  

Table 4.  Status of the 8 pathogens of interest with respect to requirements 

Pathogen 
Basis for 

transmission net 
model 

Basis for evolution 
model 

Availability of 
outbreak isolates 

for T&V 
U.S. foci/outbreaks 

B. anthracis Sufficient Marginal Yes Yes 
Y. pestis Sufficient Sufficient Yes Yes 
E. coli Sufficient Sufficient Yes Yes 

Br. melitensis Marginal Insufficient  Not known Yes? 
Burk. mallei Marginal Sufficient Not known No 
F. tularensis Inadequate Insufficient Yes Yes 

Burk. pseudom. Inadequate Marginal Not known Yes 
C. botulinum Inadequate Insufficient Not known Yes 

 

Table 4 summarizes the status of all 8 pathogens with respect to requirements for model 

building, testing, and validation.  A sufficient basis for a transmission net model means 

that one has already been developed to study outbreak dynamics, or there are analogous 

existing models that may be applicable.  A sufficient basis for an evolution model 

indicates that VNTR typing system has been developed and mutation rates for the loci 

have been estimated.  (This is a rather narrow basis, but means that the model predictions 

can be tested against VNTR typing data on field samples.)  In cases where the availability 

of isolates is not known, it is because any isolates that exist are from foreign sources or 

historical US outbreaks.   

 

Based on this breakdown, a phased development project should be initiated starting with 

B. anthracis, Y. pestis, and E. coli O157 H7 with the aim of demonstrating and validating 

the inference-on-networks approach to source identification.  Simultaneously, certain 

basic scientific field experiments and analysis should be initiated for all 8 pathogens to 

fill in the missing gaps in the modeling basis. Coordination with NIH to optimize DHS 
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resources applied to basic science studies will be necessary.  In later phases, model 

building, demonstration and validation can then be extended to Brucella melitensis, 

Burkholderia mallei and F. tularensis, Burkholderia pseudomallei, and Clostridium 

botulinum, and other pathogens as threat priorities dictate. A summary of experiments 

and analytical efforts related to all 8 pathogens is provided in table 5. 

 

To support the creation of a robust system for interpreting microbial genetic data, DHS 

should also initiate a pilot program in which, in collaboration with the CDC, for selected 

outbreaks and epizootics, state and local veterinary and/or human health departments are 

provided with resources to obtain isolates and to have the entire genetic sequence 

determined from every confirmed case of the disease.   The genetic sequence data and 

appropriately source-coded metadata for each isolate is then made available to DHS for 

testing, validating, and updating the inference-on-networks models for those pathogens.  

  

Table 5.  Some suggested experiments  
Pathogen Question Suggested experiment 

B. anthracis Does anthracis have a vegetative 
phase in soil? 

Do successive outbreaks from the 
same soil focus show a change in 

genotype? 

Y. pestis Can in-vitro VNTR mutation 
rates predict P(δ|M=1)? 

Compare predictions with direct 
determination of P(δ|M=1) in 

mouse model 

E. coli What is P(δ|M=1) in a natural 
transmission setting? 

Perform veterinary lab 
experiment50  

Br. melitensis What are the VNTR mutation 
rates? 

Perform in-vitro passage 
experiments 

Burk. mallei What is VNTR diversity observed 
in a natural, large outbreak 

Perform typing on isolates from a 
large outbreak 

F. tularensis 
How does transovarial 

transmission affect genetic 
diversity? 

Develop laboratory tick model for 
F. tularensis culture 

Burk. pseudom. What are growth and mutation 
rates in soil culture? 

Develop laboratory soil culture 
system 

C. botulinum What are growth and mutation 
rates in soil culture? 

Develop laboratory soil culture 
system 

 

In addition to providing a basis for explicit calculations of probabilities, the inference-on-

networks framework has a natural analogue in mitochondrial and Y chromosome DNA 

forensics.  This transparent relationship to accepted DNA forensics is an advantage that 

should enhance its plausibility to the legal and policy communities.  However, 
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developing the scientific infrastructure to implement this framework will require a 

concerted effort by many laboratories involving expertise not currently involved in the 

national microbial forensics program.  Hence, an important first step will be developing a 

consensus in favor of this direction within the wider microbial forensic community. 

Therefore, we highly recommend that DHS promote an open forum for “socializing” the 

concept and methodology among scientists, legal and policy experts, and program 

managers, perhaps through the Banbury meetings or another symposium.  
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Appendix 1. 
“Rare strains”, typing system resolution, and a genetic 

“match probability” for microbial forensics 
In this appendix we derive a probabilistic measure of strain “rarity” and show that the 

perception of how rare a strain is depends on the resolution of the strain typing system.  

This simple theory also provides a straightforward definition of “match probability” in 

the context of microbial forensics, because it answers the question: if we compare the 

genetic sequences of two isolates obtained from two arbitrary infected hosts, what is the 

probability that they are identical? 

 

As a zoonotic pathogen spreads geographically, it creates a network of infected animal 

hosts whose size expands as1: 

Nhosts ≈ (<k>G+1 -1)/(<k> - 1),      

where G is the number of generations of host-host transmission, and <k> is the average 

number of secondary infections caused by an infected host.   For the discussion in this 

appendix, genetic sequences that define the diversity of the pathogen over the 

transmission network are taken to be the consensus sequences of the pathogen isolates 

obtained from hosts in this network.  The rarity of a genotype can be unambiguously 

defined as the probability of finding that (consensus) genotype in an isolate sampled from 

an arbitrary host from the network.   

 

For simplicity, we will consider the clonal expansion of a pathogen, and ignore the 

possibility of genetic exchange.  Assume that an isolate taken from an infected host is 

characterized by a consensus genetic sequence with G mutable loci, and that each 

mutable locus j has a mutation rate γj per generation.  Assume that we have a typing 

system that examines L out of the G possible loci.   Following standard practice, we will 

define a strain to be one with a certain set of allele states at the L loci.  The probability 

that we will see no change in the L loci (i.e. the bacterium is the “same strain”) when two 

isolates are separated by Ngen generations is2 
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where the rate of genomic change associated with the system of L typing loci is: 

 

 

 

On the other hand, if we look at the entire sequence of G loci, the probability of 

observing the same sequence after N generations is 

 

 

 

where the rate of change associated with the whole genome is: 

 

 

 

As discussed in reference A1.3, every typing system captures only some fraction of the 

total genomic mutation rate αL = ΓL/ΓG << 1 and ΓG is approximately 0.005 per 

generation, when the entire mutational spectrum is considered.  A typical typing system 

like MLVA captures about 20% of the genomic rate, i.e. ΓL ≈ 0.001 gen-1.   

 

Without loss of generality, we may suppose that a reference genotype denoted “genotype 

0” is associated with the (historical) index host in the network.  What is the probability of 

observing genotype 0 in an isolate obtained from an arbitrary host in the network?  If the 

pathogen undergoes Ghost generations of expansion in an infected host prior to 

transmission to the next host, and we consider an isolate from a host that is g 

transmission generations away from the index host, then the total number of generations 

separating the index host isolate from the isolate in question is  

 

Ngen = Ghost • g.       
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Let the joint probability of observing genotype 0 in a host that is also separated from the 

index host by g generations in a network of G total generations of transmission be 

denoted P(0,g|G).  By the rules of conditional probability we can write: 

 

P(0,g|G) = P(0|g,G)P(g|G),       

 

where P(0|g,G) is the probability of observing genotype 0 given that the host is separated 

from the index host by g transmission generations, and P(g|G) is the probability that an 

arbitrary host chosen from the network will be separated from the index by g generations. 

Referring to the discussion above, we can write: 

 

P(0|g,G) = exp(-ΓJ• Ghost • g),      

 

where J is either G or L, depending on whether we are using the whole genome sequence 

or the typing system.   P(g|G) is simply the fraction of infected hosts at generation g out 

of the total number of hosts in the network: 

 

P(g|G) = <k>G/Nhosts          

 

The probability of observing genotype 0 is then the sum of the joint probability P(0,g|G) 

over all generations g: 

 

 
 

which leads to  
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Figure A1.1 displays P(0|G) as a function of the infected host population size for a 

transmission network with <k> = 1.1, assuming Ghost = 20 generations, ΓG = 0.005 gen-1 

and ΓL = 0.001 gen-1 (representing a typical MLVA typing system.)  Note that when 

“genotype 0” is defined by the typing system, the probability of finding it in an arbitrary 

isolate is greater than 10%, even for a very large network of infected hosts.  In contrast, 

when the whole (consensus) genome is used to define the genotype, the probability is less 

than 1% even for a small-sized outbreak network.  Thus, when whole genome sequencing 

is used as the genotyping method, every “strain” will appear to be rare.   

 

10-5

10-4

10-3

10-2

10-1

100

Pr
ob

ab
ili

ty
 o

f o
bs

er
vi

ng
 in

de
x 

ge
no

ty
pe

100 101 102 103 104 105 106

Number of infected hosts in network

 0.005 per generation
 0.001 per generation

 
Figure A1.1 Effect of typing system resolution on estimates of strain “rarity”.  

 

Another important observation is that the “rarity” of a strain will depend on the average 

connectivity of the transmission network.  Figure A1.2 shows how P(0|G) varies with 
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<k> for fixed values of Γ and Ghost.  This dependence is simply explained by the fact that 

when <k> is near 1, it takes many generations of host-host transmission to create a large 

number of infected hosts.  Thus, an arbitrary pair of isolates is more likely to be separated 

by long chains of what are, in effect, bottlenecking serial transfers.   Conversely, when 

<k> >> 1, only a few generations of host-host transmission are required to generate the 

same number of infected hosts.  Thus, pairs of isolates tend to be separated by only short 

serial transfer chains, and the probability of observing two isolates with the same 

genotype is concomitantly higher.     
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Figure A1.2 Effect of the average number of secondary infections caused by an infected 

host on the “rarity” of a genotype sampled from a network of infections. 

 

One consequence of this analysis is that it is easy to see why outbreak structure is a 

critical parameter for making estimates of the “match probability”.  Figure A1.3 

illustrates two extreme types of outbreak topology.  Example A is typical of food 

outbreaks, where bacteria from a single infected farm animal (or food worker) can 

contaminate a batch of a commercial food product and infect a large number of people.  

With a low incidence of human-human secondary infections, nearly every human isolate 
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will be related to the contaminant by a single transmission step.   Example B is 

representative of an outbreak of a disease with low infectivity, where no “superspreader” 

events take place4.  Most isolates are related to the index case by relatively long chains of 

transmission.  Some disease outbreaks exhibit significant numbers of “superpreader” 

events, where one host can infect a large number of other hosts, increasing the value of 

<k>, and therefore lie between the limits represented by A and B. 

 
Figure A1.3.  Two transmission networks with different <k> values.  A: a network 

representative of a food contamination case, <k> ≈ N, the number of infectees;  B: a 

network for a disease with low infectivity <k> ≈ 2.   

 

Finally, it must be pointed out that the theory outlined above is approximate, since it 

assumes a simplified description of the disease transmission process.  First, the initial 

equation in this appendix relating the size of the outbreak Nhosts and the number of 

generations of infection G is only true on average.  Actual disease networks are stochastic 

samples from a process described by a probability distribution for the number of new 

hosts infected by an infected host.  The random process that generates each outbreak 

transmission tree leads to a distribution of trees with different G and Nhosts values.   If our 

only information is the size of the outbreak, then G is uncertain, and the outbreak is 

characterized by a probability distribution P(G|Nhosts).  A more exact calculation of 

P(0|Nhosts) must account for this.  Secondly, we assume that outbreaks are stationary – 
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that is, their statistical properties are independent of time, or the number of generations of 

transmission.  All real outbreaks evolve as the fraction of remaining susceptible hosts 

decreases, and the ability to generate new infections grows less probable.  This will affect 

the network topology, and modify the relationship between G and Nhosts.   Thus, a more 

realistic SIR model for outbreaks is necessary to accurately gauge P(0|Nhosts). 

 

References for Appendix 1. 
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Appendix 2. 

The analogy between bacterial population genetics and 

mtDNA and Y chromosome population genetics 
 

If we consider the human population as all humans who ever existed, then it can be 

looked at as two separable, but interlocking networks, one in which all the nodes are male 

and the other all female.  The male network is determined by father-son lines of descent 

with inheritance of the Y chromosome, while the female network is determined by 

mother-daughter lines of descent with inheritance of the mitochondrial DNA (mtDNA).  

Figure A2.1 illustrates these networks by showing a portion of the genealogy of British 

royal descendents, beginning with Albert and Victoria.   Each male carries a (somatic) 

population of Y chromosomes derived from a single Y chromosome inherited from his 

father.   Each female carries a population of mtDNA molecules derived from a small set 

of mtDNA molecules inherited from her mother. The sequences of Y and mitochondrial 

DNA associated with each node are typically consensus sequences obtained from somatic 

cell samples. 

 

For each generation of father-son or mother-daughter transfer, there is a probability that 

one or more changes in the consensus sequence will occur.  These mutation rates have 

estimated by several authors.  For example, Xue, et. al. measured the substitutional 

mutation rate of Y DNA to be 3 x 10-8 per nucleotide per generation for a 10 Mb region 

that excluded gaps, repetitive sequences and palindromes1. Decker et. al. performed a 

study of Y-STR mutations at 17 loci and reported data for 389 father-son pairs2.  A total 

of 23 single locus mutation events and 1 two-locus mutational event were observed.  This 

data fits well to a Poisson distribution with γ = 0.06 per generation.  Several groups have 

measured the rate of base substitutions in the HVRI and HVRII regions of mtDNA using 

persons linked by known genealogies.  Combining the results of studies quoted in a 

recent paper by Sigur∂ardo´ttir et. al.3, the substitution rate is roughly ≈ 1 x 10-2 gen-1. 

Sigur∂ardo´ttir, et. al. also estimate that the mutation rate associated with insertions and 
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deletions from a poly C tract within HVRII is also nearly 1 x 10-2 per generation.   Table 

A2.1 summarizes some order-of-magnitude estimates of mutation rates for mitochondrial 

and Y chromosome DNA and compares them to data for bacteria and viruses in host-host 

infection events. 

 
Figure A2.1 Transmission networks for Y DNA and mtDNA based on the descendents of 
Prince Albert (3 generations) and Queen Victoria (4 generations).  UD = un-named 
daughter, US = un-named son, UGD = un-named grand-daughter. 
  

Similarly, the network topology determines the prior probability that two randomly 

chosen males or females will be connected by a pedigree with a given number of 

generations.  For human networks, the Galton-Watson process, which posits a probability 

distribution for the number of offspring of a given node, is a classic model that can also 

be used to describe transmission networks for microbial outbreaks.  There is thus a 

natural analogy between bacterial populations in infected hosts and the populations of Y 
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or mitochondrial DNA in humans.  The network framework described in reference xx and 

in section 3 of this report can be used mutatis mutandis in both human and microbial 

cases.  It should be noted, however, that there are some subtle differences between these 

two applications.  For example, haplotype frequencies in traditional mtDNA and Y-STR 

databases are based on a sampling population of living humans, whereas network 

probabilities consider all nodes past and present.   It is also true that much more accurate 

information about the relationships between known network nodes usually exists when 

using mtDNA or Y-DNA for determining familial relationships than is the case when 

microbial DNA is used to identify relationships between isolates.  

 
Table A2.1  Estimated mutation rates for viruses, bacteria, Y-DNA and mtDNA. 

Organism 

Genomic region 

and haplotype 

system 

Transmission 

event 

Average # of changes 

in haplotype per 

transmission event 

Virus 
Whole genome 

substitutions 

Host - host 
≈ 1 

Bacteria 
Whole genome 

substitutions 

Host - host 
≈ 0.01 

Bacteria, 
Whole genome 

MLVA system 

Host - host 
≈ 0.03 

Y-DNA 

10 Mbp 

Euchromatic 

region 

substitutions 

Father - son 

≈ 0.3 

Y-DNA 
17 locus STR 

system 

Father - son 
0.03 

mtDNA 
HVRI and HVRII 

substitutions 

Mother - daughter 
0.01 

mtDNA 
HVRII poly C 

tract 

Mother - daughter 
0.01 

References for Appendix 2. 

1. Xue, Y. et. al.,  Curr Biol. (2009); 19:1453-1457. 

2. Decker AE, et. al., Forensic Science International: Genetics 2 (2008) e31–e35 

3. Sigur∂ardo´ttir et. al., Am. J. Hum. Genet. 66:1599–1609, 2000 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Appendix 3. 

The microbial “paternity equation” 
 
As a pathogen population propagates along the branches of an outbreak transmission tree, 
the process of genetic change is a stochastic process that can be characterized by a 
distribution function describing the probability of observing changes in the consensus  
sequence after M steps along a chain of infected nodes.  The most general form for this 
distribution for a single step, M = 1, between any two nodes (here denoted 1 and 2 
respectively), is: 
 

P(S1,S2|M=1,τ, t1,t2)       
 
where S1 and S2 represent the consensus sequences of the microbial populations in each 
of the two nodes, τ represents the time between infection of node 1 and the transmission  
event between 1 and 2.  The parameters t1 and t2 represent the time intervals between 
infection of each node and the time when isolates are obtained from each of them.  (We 
assume that an isolate represents a sample of a node’s population that is “frozen in time” 
with respect to the course of the infection.  If isolates are subjected to additional in vitro 
culture or animal passages, we may consider the passaged samples new isolates 
associated with nodes that represent the populations of the pathogen in the culture vessel 
or laboratory animal.)  
 
Clearly, inferences about the relationship between two nodes implied by sequences S1 
and S2 are based on some quantitative comparison between S1 and S2.  This quantitative 
comparison metric is some numerical function of the two sequences.   In this derivation, 
we will assume that the comparison metric is a single scalar quantity, although there is no 
fundamental reason why it could not be multidimensional.    We will denote the 
comparison metric by δ = δ(S1,S2) and refer to δ as the “genetic distance” although it 
need not be a traditional genetic distance measure4. 
 
For simplicity, our inferential framework assumes, as do most other models of molecular 
evolution, that the random process is Markovian, and that the Markov process describing 
evolutionary change is time-reversible, which is also almost universally assumed in 
phylogenetic theory14.   The assumption of reversibility has the effect of making the 
probability function depend only on the absolute number of steps that separate two nodes 
in the transmission tree.  Thus, the transmission tree is regarded as an undirected graph 
with M computed as the number of edges connecting two nodes regardless of whether 
they are connected by a chain through intermediate nodes, or are descended from a 
common ancestor node.    
 
In addition, two other random processes play a role in determining the probability of 
observing a particular δ value.   These arise from the uncertainty in the times t1 and t2 that 
isolates are obtained from a node relative to the time the node is infected, and uncertainty 
in τ, the time that pathogen transmission occurs relative to the time the transmitting node 
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was infected.  These factors can affect the probability of observing a certain genetic 
difference between S1 and S2 because, the genetic diversity of the subpopulation of 
pathogens changes as the population size expands, and because of selective pressures and 
genetic drift during later stages of infection.   To take these factors into account we can 
define probability distributions P(t1), P(t2), and P(τ), and average over them to obtain:  
 

P(δ|M) = ∫∫∫ P(δ|M;t1,t2,τ) P(t1) P(t2) P(τ) dt1dt2dτ      (0) 
 
This averaging accounts for the fact that the values of t1, t2 and τ are never known 
precisely.  
 
The transmission tree associated with an outbreak is also generated by a random process.  
Disease transmission depends on particular mechanisms (e.g. airborne transfer by 
droplets, transmission by insect vectors, or the oral-fecal route) that are mediated by 
various kinds of social contacts. Each transmission tree generated in an actual outbreak 
can be thought of as a random sample from an ensemble of all possible outbreak trees 
that are consistent with the underlying mechanisms of transmission for that pathogen, and 
the underlying contact network for disease transmission.  The probability P(M) that a pair 
of nodes drawn randomly from the tree will be related by M steps is defined on this 
ensemble of possible trees.    
 
Consider an arbitrary sub-tree T drawn from the ensemble of outbreak trees {T} 
associated with outbreaks of the pathogen in question.  Imagine that two nodes are 
chosen at random from this tree, the pathogen isolates from each node are sequenced and 
consensus sequences S1 and S2 are obtained, from which we calculate the value of δ(S1, 
S2).   The joint probability of observing a particular δ value for a pair of nodes that are 
separated by M steps is given by: 
 

P(δ,M) = P(δ |M)•P(M),       (1) 
 
It must be noted that equation (1) implicitly assumes that the relationship between δ and 
M is independent of the particular tree, but is only a function of host-pathogen 
interactions and the host-host transmission mechanisms for the disease in question, and 
that every node and every transmission event in the tree is governed by the same 
probability distribution.  Normalization clearly requires that ΣMP(M) =1.  The 
probability that two nodes are separated by more than M0 steps is 
  
  

P(M > M0) = ΣJP(J),  where J runs from M0+1 to ∞,     (2) 
 

and the joint probability that two nodes exhibit a genetic difference δ and are separated 
by M>M0 steps is 
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P(δ,M > M0) = ΣJP(δ|J)P(J)      (3)  
 

where J runs from M = M0+1 to ∞.   
 
Note that 
 

 P(M ≤ M0) = 1 – P(M > M0)      (4) 
 
and  
 

P(δ,M ≤ M0) = ΣJP(δ|J)P(J)      (5)  
 
where J runs from M = 1 to M0     
 
 
From equations (2) - (5) we can calculate the conditional probabilities  
 

P(δ|M > M0) = P(δ,M > M0)/P(M > M0)      (6) 
 
and 
 

P(δ |M ≤ M0) = P(δ,M ≤ M0)/P(M ≤ M0)      (7) 
 
 
We can now use (6) and (7) and Bayes’s theorem to calculate the probabilities that M > 
M0 or M ≤ M0 given an observed δ value for isolates derived from the two nodes:   
 

P(M>M0|δ) = P(δ|M>M0)P(M>M0)/[P(δ|M>M0)P(M>M0) + P(δ|M≤M0)P(M≤M0)]   (8) 
 
and 
 

P(M≤M0|δ) = P(δ|M≤M0)P(M≤M0)/[P(δ|M≤M0)P(M≤M0) + P(δ|M>M0)P(M>M0)].  (9) 
 
Equations (8) and (9) provide weight-of-evidence expressions relating the measured δ 
value for a pair of isolates to the probability that they were drawn from nodes related by 
more than or fewer than M0 transmission events respectively.   When M0 = 1, then these 
equations provide the probability that the two isolates are related by direct transmission.  
(Strictly, the probability functions P(δ|M) and P(M) are not defined for the case M = 0 
since they refer to two distinct nodes from the network, so the condition M ≤ 1 is 
equivalent to M = 1.)  
 
Equation (9) with the condition M = 1 can be re-written in the form: 
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   (10) 
 
where we have made explicit the dependence on S1 and S2, the sequences determined for 
the “victim” and “suspect” nodes.  This form is analogous to the equation used to 
determine the probability of paternity or other familial relations in human DNA forensics. 
 
It is easy to see that other hypothesis tests can also be defined within this framework.  For 
example, the distribution P(M=M0|S1,S2), and its complement P(M≠M0|S1,S2) where M0 
is an arbitrary number have utility for certain kinds of forensic cases where entire 
transmission chains must be reconstructed.   Regardless of the precise form of the 
hypothesis test, calculations of the posterior probability depend, through equations (3) – 
(7) on the sampling distributions P(δ|M) and P(M), which are fundamental quantities that 
must be estimated through field and laboratory studies.   
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Appendix 4.  
Accelerated determination of spontaneous mutation 

rates in bacteria  
 
Mutation rates at specific genetic loci are key parameters for microbial forensics, but 
current methods for determining them require passage experiments that may extend over 
many months, if not years.  As a result, comparatively little is known about such rates.  In 
this appendix we demonstrate that there is a way to significantly accelerate the 
determination of bacterial mutation rates by optimizing the design of passage 
experiments.   Our core concept is based on the observation that the precision of a 
mutation rate that is determined by a serial passage experiment depends only on the 
product of the number of generations and the number of lineages generated in an 
experiment.  Modern techniques for analyzing DNA amplicons can process samples 
much more quickly than the time it takes to propagate bacteria over a large number of 
generations.  As a consequence, minimum time experiments usually require significantly 
more replicate lineages and significantly fewer generations of growth than are 
traditionally used.   Rather than propagating 10 replicate lineages for 10,000 generations, 
the minimum time experiment might consist of 1000 lineages propagated for 100 
generations each.  A consequence of the need to handle such large numbers of lineages in 
parallel is that automated replicate serial transfer is required to execute these time-
optimized experimental designs.  It is plausible that such massively parallel (in vitro) 
serial passage and sample processing could be carried out in an integrated microfluidic 
module.  In addition to greatly reducing the time to complete these experiments, a 
number of quality control issues such as contamination prevention and sample mix-up are 
best addressed by such a completely automated system.  
 
Classical mutation rate experiments focused on mutations that deactivate particular 
metabolic genes so that mutants could be identified by growth in selective media.  These 
experiments are straightforward, but are restricted to the particular genetic loci for which 
metabolic selectivity can be identified. Experiments that are relevant to microbial 
forensics examine the genetic sequences of a more general selection of loci to determine 
changes in allele state.  Examples are studies of substitution rates in E.coli 6 and VNTRs 
in B. anthracis2 and Y.pestis9 that were carried out over the last 10 years.  Both PCR 
based genetic typing assays and genomic sequencing can be used to identify allele state 
changes.   
 
There are a variety of published experimental protocols that have been used to perform 
targeted mutation rate experiments. Serial passage experiments can be differentiated by 
whether each new culture is initiated by a single clone transferred from the previous 
batch (“bottlenecking”) or whether the inoculum contains a large number of micro-
organisms from the previous culture (serial dilution.)  In the context of the inference-on-
nets concept, these two protocols mimic whether the infection transmission process 
involves a small sample of the infecting bacteria or a large sample, and therefore the 
probability of a change in the consensus genotype upon transmission. 
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Reference 9 describes a serial passage experiment which starts by agar plating a dilute 
suspension of bacteria assumed to be generated from a single clone.  A number N of the 
resulting colonies are picked and streaked onto N new agar plates to form Nlin replicate 
lineages.  After subsequent growth on the new plates, a colony is selected from each plate 
and streaked onto a new plate, and the procedure repeated M times.   Under the 
assumption that each colony originates from a single bacterium, and represents ngen 
generations of growth, the total number of generations accrued by each lineage is  
 

Ngen = M•ngen.            (A4.1)  
 
At the end of the passage period, a colony picked from each of the N final plates is 
processed for DNA analysis.  PCR is used to amplify the loci that are of interest for 
mutational analysis, and the amplicons are analyzed.   For many types of loci this simply 
consists of measuring the presence or size of the amplicons, but may also involve base 
composition or sequence determination.   
 
Serial passage experiments can also be carried out in liquid cultures by repetitive serial 
dilution.  In this case each replicate culture is initiated by a number N0 of bacteria and 
grows to N1 bacteria after ngen generations: 
 

N1 = N0•2ngen         (A4.2)   
 
In both agar plate and serial dilution type passage experiments ngen is experimentally 
estimated from the logarithm of the ratio N1/N0, which can be determined in various 
ways.   In agar plating, it is usually assumed that the chosen colonies were initiated by a 
single bacterium (N0 = 1) and that colony size is related to N1.  In liquid culture, 
calibrated optical density measurements are used to estimate N1  and N0.   
 
In some serial transfer protocols, cells are not transferred during or immediately after the 
exponential growth phase. This may be deliberate in some cases7, but in others it is 
simply a consequence of opting for the convenience of having laboratory personnel 
perform the transfer at the same time each day.   Thus, each passage of ngen generations 
may consist of a lag, exponential, and resting phase.  Such experiments might be good 
representations of multiple passages experienced by bacteria that are transferred to 
different laboratories.   Since there is some evidence that mutation can occur during 
resting phases, it is not clear that these experiments result in rates that are identical to 
what would be observed if the culture were always in exponential phase growth 
throughout the passage experiment.   
 
There are two phenomena that can affect the accuracy of mutation rate estimates and 
must be monitored for in each lineage.  The first of these is adaptive mutations that cause 
significant increases in growth rate, hence re-defining the value of the generation time 
(τgen) for that lineage.  In continuous culture these can result in “sweeps” in which a 
newly mutated genotype with increased fitness rapidly takes over the culture.   The 
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second important phenomenon is the generation of “mutators” which have significantly 
increased mutation rates.  There is some evidence that mutators may arise as a response 
to stressful growth conditions such as starvation12.   
 
The underlying model of mutation rates assumes that the appearance of mutations at each 
locus is an independent Poisson random process characterized by a rate constant γ.   
While this is a plausible framework for estimation, there are a number of ways that actual 
mutation rates might not conform to this simple model15.  For example, the rate of 
mutation at a given locus could depend on the allele state.  (Mutation rate data for 
VNTRs in Y. pestis suggest that this may be the case16.)   In addition, there are reasons to 
believe that mutations at one locus may have effects on the rate of mutations at other loci. 
The existence of mutator variants is one very obvious example of this.  Nonetheless, the 
Poisson approximation has been adapted by others in this field and provides an 
uncomplicated basis for discussing the gross features of passage experiments and their 
optimization. 
 
Consider an experiment with Nlin replicate lineages, each consisting of Ngen generations.  
In any one lineage the probability of no mutations in a certain locus after Ngen 
generations is given by:  
 

P0(Ngen, 1)  = exp(-γNgen)      (A4.3)   
 
where γ is the rate constant for that mutational locus.   In Nlin independent identical 
lineages, the probability of observing no mutations is: 
 

P0(Ngen, Nlin) = P0(Ngen,1)N
lin    =  exp(-γNgenNlin)     (A4.4) 

 
Thus, the probability of observing at least one mutation in that locus in a passage 
experiment consisting of Nlin lineages of Ngen generations each is given by: 
 

P1(Ngen,Nlin) = P1 = 1 – exp(-γNgenNlin)       (A4.5) 
 
If P1 = 95%, then out of 100 identical replicate experiments consisting of Nlin lineages 
with Ngen generations each, 95 experiments would exhibit least one mutation among the 
Nlin lineages examined.   Conversely, if a locus we are interested in has a mutation rate of 
γ, in order to do an experiment that has a 95% chance of observing at least one mutational 
event in that locus we would need to generate Nlin identical lineages of Ngen generations 
each.  (We have also derived an expression for the dependence of P1 on the uncertainty in 
the experimentally derived mutational rate constant, not shown here.) 
 
If, during a single experiment we observe mµ mutational events at a locus of interest 
among the Nlin lineages, an estimate of the mutation rate at the observed locus is given by 
(see reference 1): 
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γ ≈ mµ/NlinNgen        (A4.6) 

 
On the other hand, the variance of γ is given by: 
 

Var(γ) ≈ γ/ NlinNgen     (A4.7) 
 

Equations (6) and (7) are valid when mutational events are rare, i.e. the fraction of 
lineages that exhibit a mutational event is much smaller than 1.  The relative uncertainty 
in an estimate of γ is then given by  
 

σrel = 1/(γΝlinNgen)1/2         (A4.8) 
 
Note that in all these equations only the product of Ngen and Nlin is important, so that an 
experiment with a single lineage with a certain number of generations is equivalent to one 
with two lineages with half the number of generations each.  In the next section we will 
demonstrate how this fact can be exploited to minimize the time required to complete a 
passage experiment without compromising the accuracy of the determined mutational 
rate constant.   
 
The time needed to complete a passage experiment is the sum of three terms:  
 

 Texp = Tgr  + Tpr   + Tan         (A4.9) 
 
where Tgr is the total time spent growing the culture, Tpr is the time consumed in 
preparing the initial culture for the experiment and the final (passaged) cultures for DNA 
analysis, and Tan is the time required to analyze the passaged cultures for the presence of 
mutations.  In most experiments, Tpr is negligible compared to the time spent on growth 
and analysis.  This is because the most time consuming element, preparation of the Nlin 
passaged samples for DNA analysis, can be done in parallel on all the samples 
simultaneously.  Therefore, in subsequent derivations we will assume Tpr = 0.  If we 
define τgen to be the generation (doubling) time of the culture, and T1an to be the time it 
takes to analyze the DNA amplicons from one passaged sample (i.e. one lineage) then: 
 

Texp ≈ τgenln(2)Ngen  +  T1anNlin        (A4.10) 
 
Recall that equation (A4.5) defines the required product of Nlin and Ngen that is needed in 
order to ensure that mutations with rates up to γ will be detected among the Nlin lineages 
with probability P1.  For a robust passage experiment designed to accurately assess 
mutation rates greater than a certain value, say γ0, P1must be chosen to have a high value 
(0.95 for example; alternatively we can choose to constrain σrel, see Appendix.)  This sets 
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a constraint on the value of the product Nlin•Ngen.  Under this constraint, equation 
(A4.10) can be minimized with respect to Ngen to give: 
 

(Ngen)Min = [-T1an•ln(1 – P1)/ τgen•ln(2)•γ0]1/2        (A4.11) 
 
The associated number of lineages for this minimum time experiment is given by: 
 

(Nlin)Min  =  -ln(1 – P1)/γ0•(Ngen)Min       (A4.12) 
 
and the minimum value of Texp is given by: 
 

(Texp)Min = 2[-T1an•ln(1 – P1)•ln(2)•τgen/γ0]1/2      (A4.13) 
 

 
Figure 2.  Time and required number of lineages as a function of the number of generations.  Parameters:  
γ0 = 1 x 10-5/gen; P0 = 0.95; τgen = 0.5 hr; T1an = 8 min.    
 
To illustrate the degree of time reduction that is possible with an optimum choice of 
experimental design, consider a serial passage experiment in which we wish to observe 
mutations with rates as low as 10-5 per generation with a confidence level of P1 = 0.95.   
We will assume that τgen is 30 minutes and that T1an is 8 minutes (a typical value for a 
commercial capillary electrophoretic sequencer, see below.)  The values of Texp and Nlin 
that are obtained as Ngen is varied is shown in Figure 2.  
 
Note that a “typical” experiment that propagates bacteria for 104 generations requires 
only around 30 lineages, but will take more than 100 days to complete.  In contrast, 
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Figure 2 indicates that only 10 days are required to gain the same data from 
approximately 1000 lineages that have been propagated only 300 generations each.   
 
From equations (A4.11) and (A4.12) the ratio of the optimum Ngen and Nlin values is: 
 

(Ngen)Min/(Nlin)Min  =  T1an/[ln(2)•τgen]        (A4.14) 
 
Thus, as long as the analysis time is short compared to the generation time, the optimum 
will lie with smaller Ngen and larger Nlin.    This is likely to be the case for most bacteria.  
E. coli has a laboratory generation time of about 20 minutes in optimal media.  This 
represents one of the shortest bacterial generation times.   Most pathogens have slower 
growth rates, for example M. tuberculosis has a generation time of about 12 hours.  In 
contrast, standard CE analysis of PCR amplicons can be done at rates faster than 10 
minutes per sample, and new technologies such as the TIGER electrospray mass 
spectrometer based system can analyze close to one sample per minute17.  
 

 
Figure 3.  Time required to complete a mutation rate experiment that can determine a mutation rate of a 
given value (y axis) with a precision of 20%, for a bacterium with a given generation time (x axis).  This 
calculation assumes that allele state at a given locus can be determined in 8 minutes, e.g. by a CE 
instrument.  The blue band indicates the range of mutation rates that have been reported previously for 
VNTR and IS element mutations. 
 
Figure 3 shows the time that would be needed to complete a time-optimized experiment 
that can determine a mutation rate with a reasonable precision (20%) assuming that the 
per-sample analysis time is 8 minutes.  Note that for bacteria with generation times up to 
several hours, less than 100 days (≈ 3 months) are required to determine precise rate 
constants of 10-5 per generation or greater, and considerably less than 1000 days (2.7 
years) are required to determine such rates in slowly growing bacterium like M. 
tuberculosis.  Note that a strong implication of this figure is that many experiments to 
date are not reporting very precise measurements. 
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The number of lineages required for time-optimized determination of precise mutation 
rates is shown in Figure 4.  Under assumptions identical to those used in Figure 3, 
experimental designs with between 103 and 104 lineages are needed to obtain precise 
values of VNTR and IS element mutation rates.  Note also the consistency between 
Figures 3 and 4, since 104 samples would require a total analysis time of approximately 
55 days, or a total experiment time of 110 days.   

 
Figure 4.  Number of lineages required for a time-optimized experiment to determine a mutation rate (y 
axis) with a precision of 20%, as a function of bacterial generation time.  
 
This analysis shows that a time-optimized experimental design requires us to handle the 
growth, processing, and analysis of the very large number of parallel lineages.  Each of 
the three basic steps in a mutation rate experiment must be considered:  (1) Serial transfer 
and growth over a large number of generations and/or lineages; (2) processing of samples 
for mutation identification assays; and (3) measurement of allele states at selected loci. 
Finally, one must consider the integration of the three steps. 
 
A superior approach to carrying out such highly multiplexed parallel processes in practice 
is to utilize recent advances in the microfabrication of bioreactors, combined with 
cutting-edge microfluidic platforms.  Microfluidic platforms are very well suited for 
replication  and manifolding to permit highly parallel processing. This means that many 
samples can be handled at once so the total elapsed processing time is no longer than it 
takes to handle a single sample.  The movement of fluids through the system is computer-
controlled and such platforms are envisioned as an ultra-compact and integrated 
replacement for laboratory robotics. Thus, the requirements for automation, integration, 
and parallel processing can be met using this approach, and such a system is inherently 
safer than standard culturing because the fluid handling is nearly completely closed. 
Since it is automated, it minimizes the operator exposure per sample, and the entire 
complex fluidic system is small and easier to decontaminate than a laboratory robot.  A 
microfluidic apparatus with thousands of channels for sample handling and growth could 
easily fit inside a standard biosafety cabinet.   
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In principle, passaging experiments require only a simple modifications of existing 
microbioractor and microfluidic system designs.  Figure 7 shows how a simple paired cell 
system can be used to perform repetitive serial transfers.  Each cell must be outfitted to 
allow purging and cleaning prior to the next growth cycle, and a system for transferring 
one or more bacteria from one chamber to the next must be implemented.  Transfer of a 
known quantity of bacteria between growth chambers is probably the most challenging 
aspect of this scheme, especially if seeding with a single clone is desired.  Nonetheless, 
automated cell sorting in microfluidic chips has been demonstrated, and it is likely that 
this problem can be solved by similar principles30.  

 
Figure 7.  Two cell system for automated serial passage experiments.  
 
 
An important design consideration stems from a practical constraint on the minimum 
volume of the reactor cell that can support a given number of generations of cell division 
and a desired final cell density.  If ρ is the desired final cell density after the growth 
cycle, Ngen0 is the number of generations in one growth cycle, then V is given by: 
 

V = 2Ngen0/ρ        (15) 
 
Figure 8 shows that there is a narrow range of minimum working volumes that will 
support a typical growth cycle in which 20-30 generations of growth lead to final cell 
densities in the 108/ml to 1010/ml range.   In fact, volumes between 10 and 100 µliters are 
ideal for micro-fabrication of highly multiplexed reactor units. 
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Figure 8.  The working volume required to support a given number of generations of 
growth at a specified final cell density. 
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